找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperspectral Image Analysis; Advances in Machine Saurabh Prasad,Jocelyn Chanussot Book 2020 Springer Nature Switzerland AG 2020 Hyperspec

[復(fù)制鏈接]
查看: 39686|回復(fù): 52
樓主
發(fā)表于 2025-3-21 16:22:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hyperspectral Image Analysis
副標(biāo)題Advances in Machine
編輯Saurabh Prasad,Jocelyn Chanussot
視頻videohttp://file.papertrans.cn/431/430688/430688.mp4
概述Provides a comprehensive review of the state of the art in hyperspectral image analysis.Presents perspectives from experts who are pioneers in a broad range of signal processing and machine learning f
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Hyperspectral Image Analysis; Advances in Machine  Saurabh Prasad,Jocelyn Chanussot Book 2020 Springer Nature Switzerland AG 2020 Hyperspec
描述.This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models,?anomalous?change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding.?It presents research from leading international experts who have made foundational contributions in these areas.?The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas ofimage analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, g
出版日期Book 2020
關(guān)鍵詞Hyperspectral Image Analysis; Manifold Learning; Subspace Learning; Computational Imaging; Target Recogn
版次1
doihttps://doi.org/10.1007/978-3-030-38617-7
isbn_softcover978-3-030-38619-1
isbn_ebook978-3-030-38617-7Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Hyperspectral Image Analysis影響因子(影響力)




書目名稱Hyperspectral Image Analysis影響因子(影響力)學(xué)科排名




書目名稱Hyperspectral Image Analysis網(wǎng)絡(luò)公開度




書目名稱Hyperspectral Image Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hyperspectral Image Analysis被引頻次




書目名稱Hyperspectral Image Analysis被引頻次學(xué)科排名




書目名稱Hyperspectral Image Analysis年度引用




書目名稱Hyperspectral Image Analysis年度引用學(xué)科排名




書目名稱Hyperspectral Image Analysis讀者反饋




書目名稱Hyperspectral Image Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:52 | 只看該作者
2191-6586 in a broad range of signal processing and machine learning f.This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding
板凳
發(fā)表于 2025-3-22 02:34:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:59 | 只看該作者
5#
發(fā)表于 2025-3-22 10:43:28 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:42 | 只看該作者
7#
發(fā)表于 2025-3-22 19:47:27 | 只看該作者
Low Dimensional Manifold Model in Hyperspectral Image Reconstruction,inimization and advanced numerical discretization. Experiments on the reconstruction of hyperspectral images from sparse and noisy sampling demonstrate the superiority of LDMM?in terms of both speed and accuracy.
8#
發(fā)表于 2025-3-22 23:43:28 | 只看該作者
9#
發(fā)表于 2025-3-23 05:03:42 | 只看該作者
10#
發(fā)表于 2025-3-23 08:46:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日喀则市| 富民县| 陈巴尔虎旗| 彭山县| 龙井市| 郁南县| 万荣县| 林芝县| 新邵县| 伊春市| 教育| 噶尔县| 独山县| 高陵县| 天峨县| 台前县| 榆树市| 普兰县| 丰镇市| 祥云县| 景德镇市| 卢龙县| 泾阳县| 临桂县| 金塔县| 巴林右旗| 焉耆| 阳江市| 阿鲁科尔沁旗| 河津市| 茂名市| 山阴县| 拉萨市| 久治县| 屯留县| 赣榆县| 罗江县| 运城市| 闽侯县| 南昌县| 诏安县|