找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperparameter Optimization in Machine Learning; Make Your Machine Le Tanay Agrawal Book 2021 Tanay Agrawal 2021 Artificial Itelligence.Mac

[復(fù)制鏈接]
查看: 23549|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:55:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hyperparameter Optimization in Machine Learning
副標(biāo)題Make Your Machine Le
編輯Tanay Agrawal
視頻videohttp://file.papertrans.cn/431/430671/430671.mp4
概述Covers state-of-the-art techniques for hyperparameter tuning.Covers implementation of advanced Bayesian optimization techniques on machine learning algorithms to complex deep learning frameworks.Expla
圖書封面Titlebook: Hyperparameter Optimization in Machine Learning; Make Your Machine Le Tanay Agrawal Book 2021 Tanay Agrawal 2021 Artificial Itelligence.Mac
描述.Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods...This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you’ll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. ..The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you’ll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. ..Hyperparameter Optimization in Machine Learning. creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of
出版日期Book 2021
關(guān)鍵詞Artificial Itelligence; Machine Learning; Python; Hyper Parameter Optimization; Hyperparameter Tuning; Se
版次1
doihttps://doi.org/10.1007/978-1-4842-6579-6
isbn_softcover978-1-4842-6578-9
isbn_ebook978-1-4842-6579-6
copyrightTanay Agrawal 2021
The information of publication is updating

書目名稱Hyperparameter Optimization in Machine Learning影響因子(影響力)




書目名稱Hyperparameter Optimization in Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Hyperparameter Optimization in Machine Learning網(wǎng)絡(luò)公開度




書目名稱Hyperparameter Optimization in Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hyperparameter Optimization in Machine Learning被引頻次




書目名稱Hyperparameter Optimization in Machine Learning被引頻次學(xué)科排名




書目名稱Hyperparameter Optimization in Machine Learning年度引用




書目名稱Hyperparameter Optimization in Machine Learning年度引用學(xué)科排名




書目名稱Hyperparameter Optimization in Machine Learning讀者反饋




書目名稱Hyperparameter Optimization in Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:56:48 | 只看該作者
Tanay Agrawal well characterized. Although rice plants produce large amounts of biosilica (plant opal) in their leaf blades and rice husks, the molecular mechanism of biomineralization is still poorly understood. In the present study, we investigated the fundamental properties of plant opal in leaf blades of the
板凳
發(fā)表于 2025-3-22 03:23:54 | 只看該作者
Tanay Agrawal well characterized. Although rice plants produce large amounts of biosilica (plant opal) in their leaf blades and rice husks, the molecular mechanism of biomineralization is still poorly understood. In the present study, we investigated the fundamental properties of plant opal in leaf blades of the
地板
發(fā)表于 2025-3-22 06:40:27 | 只看該作者
Tanay Agrawales. Chemistry, which is inspired by these processes, aimsto mimic biomineralization principles and to transfer them to the general control of crystallization processesusing an environmentally benign route. In this chapter, the latest advances in hydrophilic polymer-controlledmorphosynthesis and bio-
5#
發(fā)表于 2025-3-22 09:43:12 | 只看該作者
ge number of additives with different functionalitieswhich can influence crystal growth; however, we only focus on the controlled growth and mineralization ofinorganic minerals using synthetic templates as crystal growth modifiers, including biopolymers and syntheticpolymers. New trends in the area
6#
發(fā)表于 2025-3-22 16:46:48 | 只看該作者
7#
發(fā)表于 2025-3-22 20:04:16 | 只看該作者
Hyperparameter Optimization Using Scikit-Learn,is to tune hyperparameters, this chapter introduces you to some simple yet powerful uses of algorithms implemented in the scikit-learn library for hyperparameter optimization. Scikit-learn is one of the most widely used open source libraries for machine learning practices. It’s simple to use and rea
8#
發(fā)表于 2025-3-22 23:19:25 | 只看該作者
Bayesian Optimization,to distribute them to save memory and time. We also delved into some more-complex algorithms, such as HyperBand. But none of the algorithms that we reviewed learned from their previous history. Suppose an algorithm could keep a log of all the previous observations and learn from them. For example, s
9#
發(fā)表于 2025-3-23 04:09:58 | 只看該作者
10#
發(fā)表于 2025-3-23 07:48:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园市| 砚山县| 平塘县| 武强县| 中卫市| 长垣县| 朝阳市| 南召县| 哈密市| 防城港市| 昌江| 大竹县| 安宁市| 邢台县| 青神县| 镇远县| 通许县| 古丈县| 嘉兴市| 寻乌县| 梨树县| 永济市| 合阳县| 招远市| 迁西县| 青神县| 昌吉市| 开封县| 裕民县| 方山县| 安远县| 巴东县| 文水县| 桦川县| 仁寿县| 枣阳市| 岳普湖县| 会宁县| 兴化市| 益阳市| 靖西县|