找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypernumbers and Extrafunctions; Extending the Classi Mark Burgin Book 2012 Mark Burgin 2012 differentiation.extrafuntion.hypernumber.integ

[復(fù)制鏈接]
樓主: thyroidectomy
11#
發(fā)表于 2025-3-23 11:42:40 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:31:30 | 只看該作者
Hypernumbers and Extrafunctions978-1-4419-9875-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
15#
發(fā)表于 2025-3-24 03:32:47 | 只看該作者
Hypernumbers,In this chapter we introduce real hypernumbers and study their properties in Sect. 2.1. Algebraic properties are explored in Sect. 2.2, and topological properties are investigated in Sect. 2.3. In a similar way, it is possible to build complex hypernumbers and study their properties (Burgin 2002, 2004, 2010).
16#
發(fā)表于 2025-3-24 09:50:25 | 只看該作者
Conclusion: New Opportunities,Many topics and results in the theory of hypernumbers and extrafunctions have been left beyond the scope of this little book as its goal is to give a succinct introduction into this rich and multilayered theory. Here we briefly describe some of these topics and results, articulating open problems and directions for further research.
17#
發(fā)表于 2025-3-24 10:51:19 | 只看該作者
Mark BurginDesigned to introduce the reader to hypernumbers and extrafunctions, which is another rigorous mathematical approach to operations with infinite values.Shows that even in the most standard case of rea
18#
發(fā)表于 2025-3-24 17:19:22 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:32 | 只看該作者
How to Differentiate Any Real Function,y of approximations are presented. We consider approximations of two types: approximations of a point by pairs of points, which are called A-approximations and used for differentiation, and approximations of topological spaces by their subspaces, which are called B-approximations and used for integration.
20#
發(fā)表于 2025-3-25 01:30:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商河县| 新邵县| 禹州市| 墨竹工卡县| 北宁市| 海宁市| 九龙坡区| 霍山县| 金川县| 曲周县| 鄂伦春自治旗| 南郑县| 库尔勒市| 鸡泽县| 邵阳市| 宜良县| 桃源县| 清涧县| 德清县| 白银市| 新沂市| 新竹县| 武胜县| 仙居县| 沙河市| 南陵县| 垦利县| 鄯善县| 淮南市| 宁都县| 岗巴县| 呼和浩特市| 图木舒克市| 富蕴县| 长岭县| 望江县| 绥滨县| 怀化市| 沅江市| 汶上县| 闽侯县|