找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypergeometric Orthogonal Polynomials and Their q-Analogues; Roelof Koekoek,Peter A. Lesky,René F. Swarttouw Book 20101st edition Springer

[復(fù)制鏈接]
樓主: burgeon
31#
發(fā)表于 2025-3-26 22:09:33 | 只看該作者
32#
發(fā)表于 2025-3-27 03:20:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:57:39 | 只看該作者
Orthogonal Polynomial Solutions in ,, of ,-Difference EquationsIn the case that .=0, .>0 and .≠1 we might replace . by .. in (3.2.1) and then replace . by ... Then we have . In this case the eigenvalue problem reads (cf.?(10.1.1)) . for .=0,1,2,…. This can also be written in the symmetric form . for .=0,1,2,…, with . and . The regularity condition (2.3.3) implies that .≠0.
34#
發(fā)表于 2025-3-27 12:38:46 | 只看該作者
Orthogonal Polynomial Solutions in , of Complex ,-Difference EquationsIt is also possible to obtain real polynomial solutions of the (complex) .-difference equation (12.2.1) . with argument . where .∈??{0} and .,.∈??{0}. By using .=.+., .=.+.. with .,.,.,.∈?, we find that the imaginary part of . equals . This is equal to zero for all .∈? and .∈? if
35#
發(fā)表于 2025-3-27 14:42:30 | 只看該作者
https://doi.org/10.1007/978-3-642-05014-5Askey scheme; Eigenvalue; Hypergeometric function; basic hypergeometric functions; differential equation
36#
發(fā)表于 2025-3-27 21:12:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:28:21 | 只看該作者
Orthogonal Polynomial Solutions in ,,+,, of Real ,-Difference Equationsdifferent. This implies by using theorem?3.7 that there exists a sequence of dual polynomials. In this case we have . with .=0 and ..=1=... Furthermore we have by using (11.2.2) . if we choose .=?1 in (11.2.1).
38#
發(fā)表于 2025-3-28 04:48:26 | 只看該作者
Definitions and Miscellaneous Formulas,s function .(.) is constant between its (countably many) jump points then we have the situation of positive weights .. on a countable subset . of ?. Then the system . is orthogonal on . with respect to these weights as follows:
39#
發(fā)表于 2025-3-28 09:15:26 | 只看該作者
40#
發(fā)表于 2025-3-28 10:26:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雅安市| 礼泉县| 阿拉尔市| 通城县| 偏关县| 荆州市| 同仁县| 伊金霍洛旗| 衢州市| 湖口县| 新竹县| 织金县| 罗平县| 田东县| 潜山县| 通城县| 永康市| 河西区| 阳山县| 延吉市| 丰原市| 大田县| 霍城县| 许昌县| 奉化市| 台中市| 乳山市| 景东| 密山市| 饶平县| 泸溪县| 青铜峡市| 宁都县| 武穴市| 栖霞市| 金溪县| 阜南县| 晋宁县| 乌兰县| 三江| 夏河县|