找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperfunctions and Harmonic Analysis on Symmetric Spaces; Henrik Schlichtkrull Book 1984 Birkh?user Boston, Inc. 1984 Microlocal analysis.

[復(fù)制鏈接]
查看: 29870|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:44:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces
編輯Henrik Schlichtkrull
視頻videohttp://file.papertrans.cn/431/430632/430632.mp4
叢書(shū)名稱Progress in Mathematics
圖書(shū)封面Titlebook: Hyperfunctions and Harmonic Analysis on Symmetric Spaces;  Henrik Schlichtkrull Book 1984 Birkh?user Boston, Inc. 1984 Microlocal analysis.
描述.During the last ten years a powerful technique for the study of partial differential equations with regular singularities has developed using the theory of hyperfunctions. The technique has had several important applications in harmonic analysis for symmetric spaces...This book gives an introductory exposition of the theory of hyperfunctions and regular singularities, and on this basis it treats two major applications to harmonic analysis. The first is to the proof of Helgason’s conjecture, due to Kashiwara et al., which represents eigenfunctions on Riemannian symmetric spaces as Poisson integrals of their hyperfunction boundary values...A generalization of this result involving the full boundary of the space is also given. The second topic is the construction of discrete series for semisimple symmetric spaces, with an unpublished proof, due to Oshima, of a conjecture of Flensted-Jensen...This first English introduction to hyperfunctions brings readers to the forefront of research in the theory of harmonic analysis on symmetric spaces. A substantial bibliography is also included. This volume is based on a paper which was awarded the 1983 University of Copenhagen Gold Medal Prize..
出版日期Book 1984
關(guān)鍵詞Microlocal analysis; cls; cohomology; harmonic analysis; homology; partial differential equation; partial
版次1
doihttps://doi.org/10.1007/978-1-4612-5298-6
isbn_softcover978-1-4612-9775-8
isbn_ebook978-1-4612-5298-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston, Inc. 1984
The information of publication is updating

書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces影響因子(影響力)




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces被引頻次




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces被引頻次學(xué)科排名




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces年度引用




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces年度引用學(xué)科排名




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces讀者反饋




書(shū)目名稱Hyperfunctions and Harmonic Analysis on Symmetric Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:15 | 只看該作者
Henrik Schlichtkrullstudies on the translation of nanomaterials to the clinic.In.Due to their unique size-dependent properties, nanomaterials have the potential to revolutionize the detection, diagnosis, and treatment of disease by offering superior capabilities compared to conventionally-used materials.? .Biomedical N
板凳
發(fā)表于 2025-3-22 03:07:05 | 只看該作者
Henrik Schlichtkrully offering superior capabilities compared to conventionally-used materials.? .Biomedical Nanotechnology: Methods and Protocols. brings together experts from a wide variety of fields to provide a practical overview of biomedical nanotechnology, from the conception of novel materials in the laboratory
地板
發(fā)表于 2025-3-22 07:59:39 | 只看該作者
Henrik Schlichtkrullstudies on the translation of nanomaterials to the clinic.In.Due to their unique size-dependent properties, nanomaterials have the potential to revolutionize the detection, diagnosis, and treatment of disease by offering superior capabilities compared to conventionally-used materials.? .Biomedical N
5#
發(fā)表于 2025-3-22 11:54:42 | 只看該作者
Henrik Schlichtkrullstudies on the translation of nanomaterials to the clinic.In.Due to their unique size-dependent properties, nanomaterials have the potential to revolutionize the detection, diagnosis, and treatment of disease by offering superior capabilities compared to conventionally-used materials.? .Biomedical N
6#
發(fā)表于 2025-3-22 15:49:34 | 只看該作者
Henrik Schlichtkrullstudies on the translation of nanomaterials to the clinic.In.Due to their unique size-dependent properties, nanomaterials have the potential to revolutionize the detection, diagnosis, and treatment of disease by offering superior capabilities compared to conventionally-used materials.? .Biomedical N
7#
發(fā)表于 2025-3-22 19:32:23 | 只看該作者
8#
發(fā)表于 2025-3-23 01:09:35 | 只看該作者
9#
發(fā)表于 2025-3-23 04:20:59 | 只看該作者
Henrik Schlichtkrullstudies on the translation of nanomaterials to the clinic.In.Due to their unique size-dependent properties, nanomaterials have the potential to revolutionize the detection, diagnosis, and treatment of disease by offering superior capabilities compared to conventionally-used materials.? .Biomedical N
10#
發(fā)表于 2025-3-23 08:32:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姚安县| 平和县| 铜山县| 重庆市| 本溪| 塔城市| 偃师市| 长阳| 延吉市| 马边| 宝应县| 昭平县| 吉木乃县| 内丘县| 鄂州市| 红原县| 师宗县| 福海县| 曲麻莱县| 沧源| 平泉县| 绥化市| 磐石市| 濉溪县| 庐江县| 宣武区| 寻甸| 资源县| 依安县| 芮城县| 城步| 清丰县| 迁西县| 怀柔区| 西平县| 农安县| 平江县| 花莲市| 海阳市| 积石山| 农安县|