找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperelasticity Primer; Robert M. Hackett Textbook 20161st edition Springer International Publishing Switzerland 2016 1st, 2nd, 3rd, and 4

[復(fù)制鏈接]
查看: 29645|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:23:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Hyperelasticity Primer
編輯Robert M. Hackett
視頻videohttp://file.papertrans.cn/431/430627/430627.mp4
概述Introduces hyperelasticity in a concise, straightforward manner using practical examples.Reinforces understanding with a significant number of example problems-solutions to demonstrate application of
圖書(shū)封面Titlebook: Hyperelasticity Primer;  Robert M. Hackett Textbook 20161st edition Springer International Publishing Switzerland 2016 1st, 2nd, 3rd, and 4
描述This book introduces the subject of hyperelasticity in a concise manner mainly directed to students of solid mechanics who have a familiarity with?continuum mechanics.?It focuses on important introductory topics in the field of nonlinear material behavior and?presents a number of example problems and solutions to greatly aid the student in mastering the difficulty of the subject and gaining necessary insight.?Professor Hackett delineates the concepts and applications of hyperelasticity in such a way that a new student of the subject can absorb the intricate details without having to wade through excessively complicated formulations.?The book further presents significant review material on intricately related subjects such as tensor calculus and introduces some new formulations.
出版日期Textbook 20161st edition
關(guān)鍵詞1st, 2nd, 3rd, and 4th Elasticity Tensors; Deformation Gradient; Finite Elasticity; Finite Viscoelastic
版次1
doihttps://doi.org/10.1007/978-3-319-23273-7
isbn_softcover978-3-319-36928-0
isbn_ebook978-3-319-23273-7
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書(shū)目名稱Hyperelasticity Primer影響因子(影響力)




書(shū)目名稱Hyperelasticity Primer影響因子(影響力)學(xué)科排名




書(shū)目名稱Hyperelasticity Primer網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Hyperelasticity Primer網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Hyperelasticity Primer被引頻次




書(shū)目名稱Hyperelasticity Primer被引頻次學(xué)科排名




書(shū)目名稱Hyperelasticity Primer年度引用




書(shū)目名稱Hyperelasticity Primer年度引用學(xué)科排名




書(shū)目名稱Hyperelasticity Primer讀者反饋




書(shū)目名稱Hyperelasticity Primer讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:56:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:16:28 | 只看該作者
地板
發(fā)表于 2025-3-22 06:26:36 | 只看該作者
5#
發(fā)表于 2025-3-22 11:06:46 | 只看該作者
Finite Elasticity,troduction of a strain-energy (or stored-energy) function into elasticity is due to George Green (1793–1841) and elastic solids for which such a function is assumed to exist are said to be Green elastic or hyperelastic. Elasticity without an underlying strain-energy function is called Cauchy elastic
6#
發(fā)表于 2025-3-22 13:09:05 | 只看該作者
7#
發(fā)表于 2025-3-22 19:45:17 | 只看該作者
Polar Decomposition,olar decomposition theorem states that any deformation gradient tensor can be multiplicatively decomposed into the product of an orthogonal tensor, known as the rotation tensor, and a symmetric tensor called the right stretch tensor, or into the product of a symmetric tensor called the left stretch
8#
發(fā)表于 2025-3-22 21:33:24 | 只看該作者
Strain-Energy Functions,unction of the three invariants of each of the two Cauchy-Green deformation tensors, given in terms of the principal extension ratios, or stretches. A number of different strain-energy formulations exist, having properties and characteristics that make them appropriate for characterizing different h
9#
發(fā)表于 2025-3-23 04:18:44 | 只看該作者
Stress Measures,ensor, a Lagrangian formulation, is the most significant of the stress measures. The formulation and steps for computing it are presented in terms of the Mooney-Rivlin strain-energy function model. The Cauchy stress tensor, an Eulerian formulation, is obtained directly from the second Piola-Kirchhof
10#
發(fā)表于 2025-3-23 08:32:53 | 只看該作者
Tangent Moduli, is linear, the stiffness does not change as deformation changes. However, for a hyperelastic model, differentiating the strain-energy function with respect to either the finite strain tensor or one of the two Cauchy-Green deformation tensors yields elastic “constants,” the magnitude of which depend
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞钢市| 汾阳市| 溧水县| 砀山县| 广东省| 南康市| 兴化市| 吉木萨尔县| 冷水江市| 浮梁县| 巴彦淖尔市| 哈巴河县| 湛江市| 西和县| 团风县| 南陵县| 福州市| 龙南县| 大足县| 绥芬河市| 柳河县| 德保县| 宁海县| 巴彦淖尔市| 通州市| 金溪县| 河曲县| 京山县| 宜川县| 罗甸县| 武鸣县| 从化市| 高陵县| 富顺县| 磐安县| 关岭| 五原县| 治县。| 城市| 玛多县| 娄底市|