找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypercomplex Analysis: New Perspectives and Applications; Swanhild Bernstein,Uwe K?hler,Frank Sommen Conference proceedings 2014 Springer

[復制鏈接]
樓主: commingle
31#
發(fā)表于 2025-3-27 00:11:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:13:43 | 只看該作者
Uwe K?hler,Nelson Vieira Radiologists and medical practitioners mostly depended on the analysis of PD patients’ magnetic resonance images (MRIs) to identify this disease. Due to presence of grayscale features and uncertain inherited information in MRIs, their pattern recognition and visualization were very complex. With th
33#
發(fā)表于 2025-3-27 06:03:56 | 只看該作者
34#
發(fā)表于 2025-3-27 09:48:21 | 只看該作者
Daniele C. Struppa,Adrian Vajiac,Mihaela B. Vajiacckles the challenging task of segmenting biological and medical images. The problem of partitioning multidimensional biomedical data into meaningful regions is perhaps the main roadblock in the automation of biomedical image analysis. Whether the modality of choice is MRI, PET, ultrasound, SPECT, CT
35#
發(fā)表于 2025-3-27 14:07:29 | 只看該作者
36#
發(fā)表于 2025-3-27 18:17:52 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:18 | 只看該作者
Multi M,-monogenic Function in Different Dimension,y–Riemann operator and λ can be real or Cliffordvalued constant (see [4]). Using this definition we can say that a multimetamonogenic function . is separately metamonogenic in several variables . runs in the Euclidean space . where D. is the corresponding Cauchy–Riemann operator in the space . Using
38#
發(fā)表于 2025-3-28 04:02:27 | 只看該作者
The Fractional Monogenic Signal,meters to characterize a signal. In this paper we study two generalizations in ?.. Firstly, the fractional Riesz transform and secondly the fractional monogenic signal. The Riesz transform is a generalization of the Hilbert transform and builds up the monogenic signal of a scalar-valued function ..
39#
發(fā)表于 2025-3-28 08:12:50 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
铅山县| 淅川县| 称多县| 延津县| 永城市| 大港区| 九龙县| 民和| 莱州市| 江都市| 河东区| 丰都县| 康平县| 南部县| 霍林郭勒市| 湖州市| 建水县| 左权县| 舒兰市| 军事| 镇平县| 泾阳县| 行唐县| 万盛区| 平陆县| 溆浦县| 靖远县| 阳谷县| 太保市| 海林市| 廉江市| 嘉黎县| 海原县| 庆阳市| 绥滨县| 纳雍县| 泸水县| 宜良县| 同德县| 梁河县| 钦州市|