找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Triangle Centers; The Special Relativi A.A. Ungar Book 2010 Springer Science+Business Media B.V. 2010 Application special relati

[復(fù)制鏈接]
查看: 31600|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:49:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hyperbolic Triangle Centers
副標(biāo)題The Special Relativi
編輯A.A. Ungar
視頻videohttp://file.papertrans.cn/431/430608/430608.mp4
概述Continuation of A. Ungar successful work on hyperbolic geometry, now with introduction of hyperbolic barycentric coordinates.Proves how, contrary to general belief, Einstein’s relativistic mass meshes
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: Hyperbolic Triangle Centers; The Special Relativi A.A. Ungar Book 2010 Springer Science+Business Media B.V. 2010 Application special relati
描述After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein’s relativistic mass hence meshes up extraordinarily well with Minkowski’s four-vector formalism of special relativity.In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coord
出版日期Book 2010
關(guān)鍵詞Application special relativity; Barycentric coordinates; Examining hyperbolic triangle center; Four-vec
版次1
doihttps://doi.org/10.1007/978-90-481-8637-2
isbn_softcover978-94-007-3265-0
isbn_ebook978-90-481-8637-2Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media B.V. 2010
The information of publication is updating

書目名稱Hyperbolic Triangle Centers影響因子(影響力)




書目名稱Hyperbolic Triangle Centers影響因子(影響力)學(xué)科排名




書目名稱Hyperbolic Triangle Centers網(wǎng)絡(luò)公開度




書目名稱Hyperbolic Triangle Centers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hyperbolic Triangle Centers被引頻次




書目名稱Hyperbolic Triangle Centers被引頻次學(xué)科排名




書目名稱Hyperbolic Triangle Centers年度引用




書目名稱Hyperbolic Triangle Centers年度引用學(xué)科排名




書目名稱Hyperbolic Triangle Centers讀者反饋




書目名稱Hyperbolic Triangle Centers讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:52:05 | 只看該作者
Gyrotriangle Gyrocentersgyrotriangle circumgyrocenter, ingyrocenter and orthogyrocenter, respectively. These gyrocenters are determined in this chapter in terms of their gyrobarycentric coordinate representations with respect to the vertices of their reference gyrotriangles.
板凳
發(fā)表于 2025-3-22 00:25:54 | 只看該作者
Book 2010 Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates
地板
發(fā)表于 2025-3-22 06:44:07 | 只看該作者
5#
發(fā)表于 2025-3-22 08:57:42 | 只看該作者
6#
發(fā)表于 2025-3-22 13:33:15 | 只看該作者
When Einstein Meets Minkowskifour-vector formalism of Einstein’s special theory of relativity, along with its relevant consequences to the study of hyperbolic geometry in Part II and hyperbolic triangle centers in Part?III of the book.
7#
發(fā)表于 2025-3-22 17:59:08 | 只看該作者
Epilogueition law of hyperbolic geometry, which is commutative. This Epilogue of the book may thus serve as the Prologue for the future of Einstein’s special relativity theory as a theory regulated by the hyperbolic geometry of Bolyai and Lobachevsky.
8#
發(fā)表于 2025-3-22 21:43:47 | 只看該作者
Euclidean and Hyperbolic Barycentric Coordinatesmechanics. Theorem?3.3 naturally suggests the introduction of the concept of barycentric coordinates into Euclidean geometry. Guided by analogies, we will see in this chapter how Theorem?3.2 naturally suggests the introduction of the concept of barycentric coordinates into hyperbolic geometry, where they are called gyrobarycentric coordinates.
9#
發(fā)表于 2025-3-23 01:24:53 | 只看該作者
10#
發(fā)表于 2025-3-23 08:28:16 | 只看該作者
Gyrotriangle Gyroceviansat gyrocevians generate in gyrotriangles is presented. As an application, a special gyrocevian that generates special ingyrocircles is studied. Furthermore, gyrocevian concurrency conditions are uncovered and the hyperbolic version of the Theorem of Ceva is presented along with the related hyperbolic Brocard points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固镇县| 满城县| 平舆县| 天水市| 江川县| 田东县| 辽阳市| 新蔡县| 剑川县| 南投县| 虎林市| 永福县| 泰宁县| 郧西县| 江北区| 呼图壁县| 乌兰察布市| 凤凰县| 沙田区| 平定县| 阳城县| 景洪市| 湄潭县| 云浮市| 会同县| 西林县| 天台县| 平定县| 合江县| 连江县| 大同县| 古浪县| 仙居县| 福贡县| 大洼县| 资阳市| 安新县| 五莲县| 哈密市| 仙桃市| 介休市|