找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Systems with Analytic Coefficients; Well-posedness of th Tatsuo Nishitani Book 2014 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: hector
21#
發(fā)表于 2025-3-25 05:50:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02273-435L45,35L40,35L55; Cauchy problem; Hyperbolic systems; Real analytic coefficients; Strongly hyperbolic; W
23#
發(fā)表于 2025-3-25 14:01:41 | 只看該作者
Tatsuo NishitaniIncludes supplementary material:
24#
發(fā)表于 2025-3-25 16:58:27 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:37 | 只看該作者
Two by Two Systems with Two Independent Variables,his necessary and sufficient condition we provide many instructive examples. For instance, we see that there are examples which are strictly hyperbolic apart from the initial line with polynomial coefficients such that the Cauchy problem is not . . well posed for any lower order term.
27#
發(fā)表于 2025-3-26 07:33:16 | 只看該作者
Systems with Nondegenerate Characteristics,then there exists a smooth symmetrizer and hence the Cauchy problem for . is . . well posed for any lower order term. Finally we discuss about the stability of symmetric systems in the space of hyperbolic systems.
28#
發(fā)表于 2025-3-26 12:10:24 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:06 | 只看該作者
0075-8434 ix coefficients. Mainly two questions are discussed:.(A) Under which conditions on lower order terms is the Cauchy problem well posed?.(B) When is the Cauchy problem well posed for any lower order term?.For first order two by two systems with two independent variables with real analytic coefficients
30#
發(fā)表于 2025-3-26 18:11:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云安县| 航空| 武汉市| 漳平市| 黄陵县| 比如县| 泸定县| 太原市| 福贡县| 襄垣县| 宜宾市| 平谷区| 余干县| 扎赉特旗| 安新县| 南部县| 比如县| 酉阳| 信丰县| 会泽县| 伽师县| 仙游县| 罗甸县| 仙桃市| 曲水县| 潢川县| 彭州市| 平塘县| 壤塘县| 涪陵区| 昭平县| 工布江达县| 当涂县| 京山县| 政和县| 晋州市| 收藏| 新疆| 尉犁县| 永平县| 临高县|