找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Systems with Analytic Coefficients; Well-posedness of th Tatsuo Nishitani Book 2014 Springer International Publishing Switzerlan

[復(fù)制鏈接]
樓主: hector
21#
發(fā)表于 2025-3-25 05:50:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02273-435L45,35L40,35L55; Cauchy problem; Hyperbolic systems; Real analytic coefficients; Strongly hyperbolic; W
23#
發(fā)表于 2025-3-25 14:01:41 | 只看該作者
Tatsuo NishitaniIncludes supplementary material:
24#
發(fā)表于 2025-3-25 16:58:27 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:37 | 只看該作者
Two by Two Systems with Two Independent Variables,his necessary and sufficient condition we provide many instructive examples. For instance, we see that there are examples which are strictly hyperbolic apart from the initial line with polynomial coefficients such that the Cauchy problem is not . . well posed for any lower order term.
27#
發(fā)表于 2025-3-26 07:33:16 | 只看該作者
Systems with Nondegenerate Characteristics,then there exists a smooth symmetrizer and hence the Cauchy problem for . is . . well posed for any lower order term. Finally we discuss about the stability of symmetric systems in the space of hyperbolic systems.
28#
發(fā)表于 2025-3-26 12:10:24 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:06 | 只看該作者
0075-8434 ix coefficients. Mainly two questions are discussed:.(A) Under which conditions on lower order terms is the Cauchy problem well posed?.(B) When is the Cauchy problem well posed for any lower order term?.For first order two by two systems with two independent variables with real analytic coefficients
30#
發(fā)表于 2025-3-26 18:11:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 遂川县| 乳山市| 安阳县| 聊城市| 喀喇沁旗| 福安市| 长子县| 文化| 比如县| 江达县| 万载县| 景宁| 古田县| 化隆| 英山县| 阿拉善盟| 梧州市| 东辽县| 名山县| 柳林县| 招远市| 九龙县| 搜索| 广水市| 筠连县| 唐海县| 景德镇市| 洛川县| 务川| 赤峰市| 全椒县| 五莲县| 内乡县| 竹溪县| 武冈市| 高唐县| 汶上县| 明溪县| 余干县| 广德县|