找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Problems: Theory, Numerics, Applications; Eighth International Heinrich Freistühler,Gerald Warnecke Conference proceedings 2001

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:42:36 | 只看該作者
On the Convergence Rate of Operator Splitting for Weakly Coupled Systems of Hamilton-Jacobi Equatioton-Jacobi equations, we establish a linear.convergence rate for a semi-discrete operator splitting. This paper complements our previous work [3] on the convergence rate of operator splitting for scalar Hamilton-Jacobi equations with source term.
32#
發(fā)表于 2025-3-27 02:58:15 | 只看該作者
33#
發(fā)表于 2025-3-27 06:23:41 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:42 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:11 | 只看該作者
36#
發(fā)表于 2025-3-27 19:33:43 | 只看該作者
37#
發(fā)表于 2025-3-27 23:55:03 | 只看該作者
38#
發(fā)表于 2025-3-28 05:09:27 | 只看該作者
Proving Existence of Nonlinear Differential Equations Using Numerical Approximations,ution of a near-by problem. The aim is to show existence of stationary viscous shock-wave solutions of hyperbolic conservation laws. The technique is applied to viscous Burgers’ equation. Equations for the difference between the exact and the approximate solution are constructed. Sufficient conditio
39#
發(fā)表于 2025-3-28 09:03:15 | 只看該作者
40#
發(fā)表于 2025-3-28 13:33:50 | 只看該作者
A Wave Propagation Algorithm for the Solution of PDEs on the Surface of a Sphere,nite volume method using gnomonic grid mappings to solve equations relevant to geophysical fluid dynamics. The method is a generalization of the wave propagation algorithm of CLAWPACK for domains which lie on curved manifolds. We show that in this finite volume context it becomes possible to regular
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄱阳县| 天气| 大荔县| 若尔盖县| 拉孜县| 万州区| 衡东县| 玛沁县| 乐山市| 祁门县| 澜沧| 白水县| 开江县| 阜宁县| 天峻县| 县级市| 新安县| 靖宇县| 融水| 县级市| 通山县| 尚义县| 卫辉市| 彭州市| 全椒县| 伊川县| 阳新县| 平舆县| 丰顺县| 麟游县| 衡南县| 钟山县| 长寿区| 贵港市| 黔西县| 石屏县| 顺平县| 宣恩县| 厦门市| 贵定县| 许昌市|