找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Manifolds and Discrete Groups; Michael Kapovich Book 20101st edition Birkh?user Boston 2010 3-dimensional topology.Compactifica

[復(fù)制鏈接]
樓主: proptosis
11#
發(fā)表于 2025-3-23 13:33:05 | 只看該作者
Michael Kapovichof his work and reasons for its suppression, as well as the .This book comprises a series of lectures given by celebrated Soviet neurophysiologist Nikolai Alexandrovich Bernstein in Moscow in 1925 and first published in Russian in 1926. Bernstein’s groundbreaking work, which has had a significant in
12#
發(fā)表于 2025-3-23 15:45:48 | 只看該作者
Michael Kapoviched along with distribution of shear strain on the walls of the artery. During the stent designing process, the knowledge about a pathophysiological role of the shear strains during the restenosis process and about the possible phlebitis is required. According to many studies, low shear strain levels
13#
發(fā)表于 2025-3-23 21:04:21 | 只看該作者
2197-1803 ly we planned 1 including a detailed proof in the remaining case of manifolds fibered over § as well. However, since Otal‘s book [Ota96] (which treats the fiber bundle case) became available, only a sketch of the proof in the fibered case will be given here.978-0-8176-4912-8978-0-8176-4913-5Series ISSN 2197-1803 Series E-ISSN 2197-1811
14#
發(fā)表于 2025-3-23 23:33:03 | 只看該作者
15#
發(fā)表于 2025-3-24 05:44:31 | 只看該作者
Book 20101st edition we present a complete proof of the Hyperbolization Theorem in the "generic case." Initially we planned 1 including a detailed proof in the remaining case of manifolds fibered over § as well. However, since Otal‘s book [Ota96] (which treats the fiber bundle case) became available, only a sketch of the proof in the fibered case will be given here.
16#
發(fā)表于 2025-3-24 07:13:56 | 只看該作者
17#
發(fā)表于 2025-3-24 14:36:10 | 只看該作者
Michael Kapovichating that the latter may underestimate the AAA risk of rupture. The ILT appeared to provide a cushioning effect reducing the stresses, while small calcifications appeared to weaken the wall and contribute to the rupture risk. The location of the maximal wall stresses and rupture potential index (RP
18#
發(fā)表于 2025-3-24 15:35:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:34:03 | 只看該作者
20#
發(fā)表于 2025-3-25 01:17:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双鸭山市| 边坝县| 巍山| 宣恩县| 大庆市| 平泉县| 永川市| 中超| 保山市| 石渠县| 南靖县| 嫩江县| 灵璧县| 沧源| 文昌市| 大洼县| 朔州市| 临沧市| 施甸县| 扶余县| 吐鲁番市| 旺苍县| 海伦市| 元阳县| 定兴县| 柘荣县| 黄龙县| 民权县| 汉中市| 财经| 娄烦县| 揭阳市| 黔南| 牟定县| 宝鸡市| 乌审旗| 宁南县| 通辽市| 通州市| 楚雄市| 酒泉市|