找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hyperbolic Geometry; James W. Anderson Textbook 19991st edition Springer-Verlag London 1999 Hyperbolic geometry.Hyperbolic plane.Hyperboli

[復制鏈接]
查看: 42308|回復: 37
樓主
發(fā)表于 2025-3-21 18:32:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hyperbolic Geometry
編輯James W. Anderson
視頻videohttp://file.papertrans.cn/431/430591/430591.mp4
概述THIS IS THE FIRST GENUINELY INTRODUCTORY TEXTBOOK DEVOTED TO THE TOPIC: IT IS SELF-CONTAINED AND ASSUMES VERY FEW PREREQUISITES..INCLUDES FULL SOLUTIONS FOR ALL EXERCISES - THE ONLY BOOK ON THE SUBJEC
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Hyperbolic Geometry;  James W. Anderson Textbook 19991st edition Springer-Verlag London 1999 Hyperbolic geometry.Hyperbolic plane.Hyperboli
描述.The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject,?providing the reader with a firm grasp of the concepts and techniques of this beautiful area of mathematics.?Topics covered include the upper half-space model of the hyperbolic plane, M?bius transformations, the general M?bius group and the subgroup preserving path length in the upper half-space model, arc-length and distance, the Poincaré disc model, convex subsets of the hyperbolic plane, and the Gauss-Bonnet formula for the area of a hyperbolic polygon and its applications. ..This updated second edition also features:..- an expanded discussion of planar models of the hyperbolic plane arising from complex analysis;..- the hyperboloid model of the hyperbolic plane;..- a brief discussion of generalizations to higher dimensions;..- many new exercises..
出版日期Textbook 19991st edition
關(guān)鍵詞Hyperbolic geometry; Hyperbolic plane; Hyperbolicity; geometry; mathematics
版次1
doihttps://doi.org/10.1007/978-1-4471-3987-4
isbn_ebook978-1-4471-3987-4Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London 1999
The information of publication is updating

書目名稱Hyperbolic Geometry影響因子(影響力)




書目名稱Hyperbolic Geometry影響因子(影響力)學科排名




書目名稱Hyperbolic Geometry網(wǎng)絡(luò)公開度




書目名稱Hyperbolic Geometry網(wǎng)絡(luò)公開度學科排名




書目名稱Hyperbolic Geometry被引頻次




書目名稱Hyperbolic Geometry被引頻次學科排名




書目名稱Hyperbolic Geometry年度引用




書目名稱Hyperbolic Geometry年度引用學科排名




書目名稱Hyperbolic Geometry讀者反饋




書目名稱Hyperbolic Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:52 | 只看該作者
James W. AndersonTHIS IS THE FIRST GENUINELY INTRODUCTORY TEXTBOOK DEVOTED TO THE TOPIC: IT IS SELF-CONTAINED AND ASSUMES VERY FEW PREREQUISITES..INCLUDES FULL SOLUTIONS FOR ALL EXERCISES - THE ONLY BOOK ON THE SUBJEC
板凳
發(fā)表于 2025-3-22 02:59:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:20 | 只看該作者
5#
發(fā)表于 2025-3-22 09:26:39 | 只看該作者
6#
發(fā)表于 2025-3-22 15:14:30 | 只看該作者
The Basic Spaces,his book takes place. We define . and talk a bit about .. In order to aid our construction of a reasonable group of transformations of ?, we expand our horizons to consider the .., and close the chapter by considering how ? sits as a subset of ..
7#
發(fā)表于 2025-3-22 20:41:54 | 只看該作者
,The General M?bius Group,ions, we spend this chapter by describing such a reasonable group of transformations of ??, namely the . M?b, which consists of compositions of . and . We close the chapter by restricting our attention to the transformations in M?b preserving ?.
8#
發(fā)表于 2025-3-22 23:23:06 | 只看該作者
9#
發(fā)表于 2025-3-23 02:44:22 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
高雄县| 曲麻莱县| 荔浦县| 建始县| 双鸭山市| 蓝田县| 乌鲁木齐市| 南阳市| 清新县| 松滋市| 渝北区| 白玉县| 诸城市| 武宁县| 吕梁市| 徐州市| 靖边县| 从江县| 玉环县| 彭阳县| 平谷区| 阳朔县| 阳原县| 淮安市| 定陶县| 应城市| 增城市| 常州市| 靖宇县| 博野县| 龙游县| 三都| 利津县| 金寨县| 潮州市| 黄陵县| 鱼台县| 杂多县| 滦平县| 定日县| 陆丰市|