找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hydrological Data Driven Modelling; A Case Study Approac Renji Remesan,Jimson Mathew Book 2015 Springer International Publishing Switzerlan

[復(fù)制鏈接]
查看: 18508|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:15:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hydrological Data Driven Modelling
副標(biāo)題A Case Study Approac
編輯Renji Remesan,Jimson Mathew
視頻videohttp://file.papertrans.cn/431/430454/430454.mp4
概述Covers many aspects of data based modelling issues with application to Hydrology.Brings readers up to date with clear case studies.Enables engineers to appropriately identify modelling approaches and
叢書名稱Earth Systems Data and Models
圖書封面Titlebook: Hydrological Data Driven Modelling; A Case Study Approac Renji Remesan,Jimson Mathew Book 2015 Springer International Publishing Switzerlan
描述.This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space..
出版日期Book 2015
關(guān)鍵詞Applied hydrology; Artificial intelligence in hydrology; Evapotranspiration modelling; Hydrologic model
版次1
doihttps://doi.org/10.1007/978-3-319-09235-5
isbn_softcover978-3-319-35028-8
isbn_ebook978-3-319-09235-5Series ISSN 2364-5830 Series E-ISSN 2364-5849
issn_series 2364-5830
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Hydrological Data Driven Modelling影響因子(影響力)




書目名稱Hydrological Data Driven Modelling影響因子(影響力)學(xué)科排名




書目名稱Hydrological Data Driven Modelling網(wǎng)絡(luò)公開度




書目名稱Hydrological Data Driven Modelling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hydrological Data Driven Modelling被引頻次




書目名稱Hydrological Data Driven Modelling被引頻次學(xué)科排名




書目名稱Hydrological Data Driven Modelling年度引用




書目名稱Hydrological Data Driven Modelling年度引用學(xué)科排名




書目名稱Hydrological Data Driven Modelling讀者反饋




書目名稱Hydrological Data Driven Modelling讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:19:20 | 只看該作者
Application of Statistical Blockade in Hydrology, is included in this chapter and the capability of Statistical Blockade is compared with adequately trained Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to get an idea of the accuracy of the Statistical Blockade.
板凳
發(fā)表于 2025-3-22 00:31:55 | 只看該作者
Machine Learning and Artificial Intelligence-Based Approaches,ption of the training algorithms used in this book and points out the conceptual advantages of Levenberg–Marquardt (LM) algorithms over Broyden-Fletcher-Goldfarb-Shanno (BFGS) training algorithms and Conjugate Gradient (CG) training algorithms.
地板
發(fā)表于 2025-3-22 05:03:24 | 只看該作者
Data Based Solar Radiation Modelling,ther nonlinear intelligent models and other wavelet conjunction models on daily data from the Brue catchment. Towards end of this chapter, we performed the best and useful data modelling approach for the daily solar radiation modelling at the Brue catchment in terms of very simple overall model utility comparison.
5#
發(fā)表于 2025-3-22 09:06:57 | 只看該作者
Book 2015on of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical a
6#
發(fā)表于 2025-3-22 14:13:43 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:07 | 只看該作者
Data Based Rainfall-Runoff Modelling,ection of the chapter suggests a simple procedure to estimate the utility of different models considering different attributes like uncertainty (in terms of model sensitivity and error) and complexity (in terms of modelling time) and applied to rainfall runoff modelling.
8#
發(fā)表于 2025-3-22 23:04:13 | 只看該作者
Hydroinformatics and Data-Based Modelling Issues in Hydrology,ing in hydrology, e.g., how much benefit could be gained by increased complexity in data-based models or whether increased complexity adversely affects model performance. The chapter reminds one of the need to evaluate existing hypothetic assumptions on various modeling properties.
9#
發(fā)表于 2025-3-23 02:46:25 | 只看該作者
Introduction,gorously evaluate these approaches with state-of-art models through detailed and comprehensive experimentation and comparative studies. This chapter also aims to have a quick look into the critical points of current knowledge and or methodological approaches on data based modelling in hydrology and
10#
發(fā)表于 2025-3-23 06:52:46 | 只看該作者
Model Data Selection and Data Pre-processing Approaches, pools and deciding upon the optimum data length to make a reliable prediction are the main purposes of these approaches. This section of the book describes the abilities of novel techniques such as Gamma Test (GT), entropy theory (ET), Principle Component Analysis (PCA), cluster analysis (CA), Akai
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射阳县| 固始县| 徐闻县| 凤山市| 扶余县| 南漳县| 太原市| 安仁县| 五莲县| 普兰店市| 新民市| 鲁甸县| 南城县| 苏尼特右旗| 上饶市| 资中县| 屏东市| 宁武县| 荆门市| 雷州市| 四川省| 钦州市| 修文县| 万山特区| 山西省| 闻喜县| 巨鹿县| 牡丹江市| 阳新县| 泗洪县| 平度市| 盐山县| 和政县| 马关县| 横峰县| 门头沟区| 棋牌| 永寿县| 无棣县| 温泉县| 扶绥县|