找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hydrogen Technologies; Reimund Neugebauer Book 2023 Springer Nature Switzerland AG 2023 Renewable energies.Energy storage.Industrial produ

[復(fù)制鏈接]
樓主: 類屬
11#
發(fā)表于 2025-3-23 13:19:01 | 只看該作者
Reimund Neugebaueret captures nonlinear effects of multi-omics data to survival outcomes via a neural network framework, while allowing one to biologically interpret the model. In the extensive experiments with multi-omics data of Gliblastoma multiforme (GBM) patients, MiNet outperformed the current cutting-edge meth
12#
發(fā)表于 2025-3-23 13:55:02 | 只看該作者
Simon Harst,Bernhard A?mus,Angelika Hackner,Anja Haslingeris used to calculate the relational initial scores for new drugs. To systematically evaluate the prediction performance of IDNDDI and compare it with other prediction methods, we conduct the 5-fold cross validation and de novo drug validation. In terms of the AUC (area under the ROC curve)value, IDN
13#
發(fā)表于 2025-3-23 19:14:19 | 只看該作者
Martin Wietschel,Elisabeth Dütschke,Marius Neuwirth,Aline Scherrer,Lin Zheng,Norman Gerhardt,Sebastial information. Also, the partner antigen is vital for paratope prediction, and we employ Att-BLSTM on the partner antigen sequence as well. The outputs of CNNs and Att-BLSTM networks are combined to predict antibody paratope by fully-connected networks. The experiments show that our proposed method
14#
發(fā)表于 2025-3-24 01:29:36 | 只看該作者
Jochen Bard,Norman Gerhardt,Marie Plaisir,Ramona Schr?er,Anne Held,Hans-Martin Henning,Christoph Koso-layer RGCN to predict microbe-disease associations. Compared with other methods, TNRGCN achieves a good performance in cross validation. Meanwhile, case studies for diseases demonstrate TNRGCN has a good performance for predicting potential microbe-disease associations.
15#
發(fā)表于 2025-3-24 05:51:18 | 只看該作者
16#
發(fā)表于 2025-3-24 10:15:58 | 只看該作者
Ulf Groos,Malte Semmel,Achim Schaadt,Stefan Bürger,Felix Horch,Johannes Geiling,Richard ?chsner,Gunt.We conducted a series of simulation experiments to assess the performance of . and compared it against previously existing probabilistic methods (.) and parsimonious methods (.). As we learned from the results, . can reconstruct more correct ancestral adjacencies and yet run several orders of magni
17#
發(fā)表于 2025-3-24 12:27:40 | 只看該作者
18#
發(fā)表于 2025-3-24 18:47:17 | 只看該作者
Ulrike Herrmann,Natalia Pieton,Benjamin Pfluger,Katharina Alms,Tanja Manuela Kneiske,Christopher VogrRWMDE, takes several steps of random walking on three different biological networks, microRNA-microRNA functional similarity network(MFN), disease-disease similarity network(DSN) and environmental factor similarity network(ESN) respectively so as to get microRNA-disease association information from
19#
發(fā)表于 2025-3-24 21:25:57 | 只看該作者
Sebastian Metz,Tom Smolinka,Christian I. Bern?cker,Stefan Loos,Thomas Rauscher,Lars R?ntzsch,Michaeleins. It is the same way with S-PIN and NF-APIN. NF-APIN is a dynamic PIN constructed by using gene expression data and S-PIN. The experimental results on the protein interaction network of S.cerevisiae shows that all the six network-based methods achieve better results when being applied on TS-PIN
20#
發(fā)表于 2025-3-25 01:15:41 | 只看該作者
Ulf Groos,Carsten Cremers,Laura Nousch,Christoph Baumg?rtnere true biological mutations. HapIso uses a k-means clustering algorithm aiming to group the reads into two meaningful clusters maximizing the similarity of the reads within cluster and minimizing the similarity of the reads from different clusters. Each cluster corresponds to a parental haplotype. W
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 楚雄市| 新沂市| 东莞市| 惠州市| 通化县| 色达县| 揭东县| 屏东市| 共和县| 攀枝花市| 清新县| 长乐市| 岳普湖县| 民丰县| 平利县| 秀山| 太保市| 柳州市| 裕民县| 汕尾市| 棋牌| 绥宁县| 固原市| 达拉特旗| 涞源县| 略阳县| 阿城市| 黄冈市| 裕民县| 将乐县| 潜江市| 大悟县| 凌云县| 彭山县| 平乐县| 靖江市| 高平市| 宁安市| 栾川县| 磐安县|