找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hydrogel for Biomedical Applications; 3D/4D Printing, Self Andy H. Choi,Besim Ben-Nissan Book 2024 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
樓主: SPARK
11#
發(fā)表于 2025-3-23 11:53:08 | 只看該作者
3D, 4D Printing, and Bioprinting of Hydrogels,produce hydrogels appropriate for tissue engineering such as digital light processing, and 3D printing systems based on laser, inkjet, and nozzle or extrusion. The notion behind the development of 4D printing began in 2014 and the fabrication process can be described as the amalgamation of additive
12#
發(fā)表于 2025-3-23 15:02:26 | 只看該作者
13#
發(fā)表于 2025-3-23 18:04:43 | 只看該作者
Future of Drug Delivery: Microrobotics and Self-powered Devices,r hand, soft robots, made from intrinsically stretchable and/or soft materials such as silicone rubber or hydrogels, offer the possibility to connect humans with machines. The introduction of hydrogels into the field of soft robotics could widen its utilization in the biomedical arena such as drug d
14#
發(fā)表于 2025-3-24 01:01:00 | 只看該作者
Book 2024 the concept of self-healing and its amalgamation with 3D printed injectable cell-laden tissue constructs. It also explores the use of metal-free “click” chemistry and enzymes such as horseradish peroxidase, hematin, tyrosinase, and transglutaminase to obtain chemically crosslinked hydrogels and the
15#
發(fā)表于 2025-3-24 05:20:04 | 只看該作者
16#
發(fā)表于 2025-3-24 10:04:29 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:46 | 只看該作者
Brief Introduction and Various Crosslinking Approaches, mild conditions and its utilization enables hydrogels to be crosslinked via several approaches with physical and chemical properties customizable to suit the intended application. Copper-free “click” chemistry has emerged as a useful technique for synthesizing hydrogels intended to be used in regen
18#
發(fā)表于 2025-3-24 15:27:19 | 只看該作者
3D, 4D Printing, and Bioprinting of Hydrogels,r categorized according to the type of stimulus used such as temperature, light, moisture, or an external magnetic field. Distinct from conventional 3D printing approaches, bioprinting requires a different technical methodology that is compatible with depositing living cells. Deposition approaches s
19#
發(fā)表于 2025-3-24 22:09:49 | 只看該作者
20#
發(fā)表于 2025-3-25 00:30:50 | 只看該作者
Future of Drug Delivery: Microrobotics and Self-powered Devices,ic nanogenerators (TENGs) have found use in many biomedical and healthcare applications such as energy harvesters and self-powered sensors. Recently, considerable efforts have been made to develop hydrogel-based TENGs as an on-demand, controlled-release, and self-regulated drug delivery systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新津县| 崇州市| 普宁市| 崇明县| 吉水县| 和顺县| 隆子县| 莒南县| 玛多县| 新干县| 韶关市| 横山县| 奉化市| 重庆市| 成安县| 隆子县| 申扎县| 台南县| 赣榆县| 上犹县| 商城县| 嘉禾县| 儋州市| 黎平县| 綦江县| 宜城市| 茂名市| 中牟县| 罗山县| 手机| 青海省| 潜江市| 夏津县| 大洼县| 南投市| 新民市| 康定县| 贡山| 玉林市| 阿拉善左旗| 六盘水市|