找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybrid Soft Computing for Multilevel Image and Data Segmentation; Sourav De,Siddhartha Bhattacharyya,Paramartha Dutt Book 2016 Springer In

[復(fù)制鏈接]
樓主: Odious
21#
發(fā)表于 2025-3-25 05:48:43 | 只看該作者
22#
發(fā)表于 2025-3-25 09:19:14 | 只看該作者
Image Segmentation: A Review,This chapter intends to provide a brief review of different image segmentation techniques.
23#
發(fā)表于 2025-3-25 14:30:48 | 只看該作者
Self-supervised Grey Level Image Segmentation Using an Optimised MUSIG (OptiMUSIG) Activation FunctDifferent types of image segmentation methods, both supervised and unsupervised, as discussed in Chap.?., have been applied over the years for the purpose of image segmentation and extraction.
24#
發(fā)表于 2025-3-25 17:24:20 | 只看該作者
Self-supervised Colour Image Segmentation Using Parallel OptiMUSIG (ParaOptiMUSIG) Activation FunctColour image segmentation and analysis form a challenging proposition in the image processing arena owing to the nature and variety of data to be processed?[258, 259].
25#
發(fā)表于 2025-3-25 22:39:28 | 只看該作者
Self-supervised Grey Level Image Segmentation Using Multi-Objective-Based Optimised MUSIG (OptiMUSIThe multilevel greyscale image can efficiently be segmented by the OptiMUSIG activation function with the help of the multilayer self-organizing neural network (MLSONN) architecture.
26#
發(fā)表于 2025-3-26 01:26:32 | 只看該作者
Self-supervised Colour Image Segmentation Using Multiobjective Based Parallel Optimized MUSIG (ParaIn Chap.?., it has been illustrated and proved that the colour images are efficiently segmented by the ParaOptiMUSIG [193, 258, 273] activation function in connection with the parallel self-organizing neural network (PSONN) [195, 196] architecture.
27#
發(fā)表于 2025-3-26 07:26:09 | 只看該作者
28#
發(fā)表于 2025-3-26 10:53:18 | 只看該作者
29#
發(fā)表于 2025-3-26 12:54:10 | 只看該作者
30#
發(fā)表于 2025-3-26 20:37:52 | 只看該作者
Book 2016omputing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures..This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐城市| 奇台县| 南汇区| 广州市| 天气| 会同县| 襄垣县| 仁怀市| 莎车县| 巩义市| 广宗县| 米脂县| 浪卡子县| 塔河县| 册亨县| 七台河市| 成都市| 澳门| 紫金县| 文山县| 桂林市| 江城| 余庆县| 兖州市| 乡城县| 孝感市| 库伦旗| 英德市| 朝阳县| 修武县| 达孜县| 南皮县| 苏州市| 云梦县| 琼海市| 林芝县| 巴林右旗| 新田县| 雷山县| 西乡县| 车致|