找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hybrid Logic and its Proof-Theory; Torben Braüner Book 2011 Springer Science+Business Media B.V. 2011 Computational Logic.Logic.Mathematic

[復(fù)制鏈接]
樓主: 小天使
41#
發(fā)表于 2025-3-28 18:05:54 | 只看該作者
,Comparison to Seligman’s Natural Deduction System,ckwards and forwards between the systems, and in the fourth section we devise a set of reduction rules for our version of Seligman’s system by translation of the reduction rules for the system given in Section 2.2. In the final section we discuss the results.
42#
發(fā)表于 2025-3-28 22:42:22 | 只看該作者
43#
發(fā)表于 2025-3-28 23:05:37 | 只看該作者
44#
發(fā)表于 2025-3-29 05:30:41 | 只看該作者
45#
發(fā)表于 2025-3-29 08:42:14 | 只看該作者
Book 2011it reference to individual points in a model (where the points representtimes, possible worlds, states in a computer, or something else). This is useful for many applications, for example when reasoning about time one often wants to formulate a series of statements about what happens at specific tim
46#
發(fā)表于 2025-3-29 14:35:15 | 只看該作者
Introduction to Hybrid Logic,ogic and first-order logic. In the third section we discuss the work of Arthur Prior and describe how hybrid logic has its origin in his work. In the fourth section we outline the development of hybrid logic since Prior
47#
發(fā)表于 2025-3-29 18:46:48 | 只看該作者
Functional Completeness for a Hybrid Logic,n of functional completeness, and in the third section we give general rule schemas for natural deduction rules. In the fourth section we prove the functional completeness result and in the final section we discuss the result.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渑池县| 深水埗区| 乌海市| 桐城市| 铜梁县| 湖口县| 松溪县| 中江县| 丹凤县| 公安县| 宜宾县| 荣成市| 离岛区| 红河县| 兰溪市| 赞皇县| 托里县| 昭通市| 井冈山市| 同江市| 阿图什市| 探索| 营山县| 海安县| 盐池县| 商城县| 井陉县| 昭觉县| 饶阳县| 资阳市| 同江市| 奉新县| 八宿县| 新昌县| 林甸县| 微山县| 墨脱县| 台安县| 涟源市| 名山县| 佛教|