找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Human Face Recognition Using Third-Order Synthetic Neural Networks; Okechukwu A. Uwechue,Abhijit S. Pandya Book 1997 Springer Science+Busi

[復制鏈接]
查看: 18752|回復: 43
樓主
發(fā)表于 2025-3-21 19:39:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks
編輯Okechukwu A. Uwechue,Abhijit S. Pandya
視頻videohttp://file.papertrans.cn/430/429153/429153.mp4
叢書名稱The Springer International Series in Engineering and Computer Science
圖書封面Titlebook: Human Face Recognition Using Third-Order Synthetic Neural Networks;  Okechukwu A. Uwechue,Abhijit S. Pandya Book 1997 Springer Science+Busi
描述.Human Face Recognition Using Third-Order Synthetic NeuralNetworks. explores the viability of the application of.High-order. synthetic neural network technology totransformation-invariant recognition of complex visual patterns.High-order networks require little training data (hence, shorttraining times) and have been used to perform transformation-invariantrecognition of relatively simple visual patterns, achieving very highrecognition rates. The successful results of these methods providedinspiration to address more practical problems which have.grayscale. as opposed to .binary. patterns (e.g.,alphanumeric characters, aircraft silhouettes) and are also morecomplex in nature as opposed to purely edge-extracted images -human face recognition .is. such a problem. ..Human Face Recognition Using Third-Order Synthetic NeuralNetworks. serves as an excellent reference for researchers andprofessionals working on applying neural network technology to therecognition of complex visual patterns.
出版日期Book 1997
關鍵詞neural networks; pattern recognition; training
版次1
doihttps://doi.org/10.1007/978-1-4615-4092-2
isbn_softcover978-1-4613-6832-8
isbn_ebook978-1-4615-4092-2Series ISSN 0893-3405
issn_series 0893-3405
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks影響因子(影響力)




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks影響因子(影響力)學科排名




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks網(wǎng)絡公開度




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks網(wǎng)絡公開度學科排名




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks被引頻次




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks被引頻次學科排名




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks年度引用




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks年度引用學科排名




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks讀者反饋




書目名稱Human Face Recognition Using Third-Order Synthetic Neural Networks讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:49:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:24:12 | 只看該作者
地板
發(fā)表于 2025-3-22 06:30:38 | 只看該作者
Introduction,ded inspiration to address more practical problems which have . as opposed to . patterns (e.g. alphanumeric characters, aircraft silhouettes) and are also more complex in nature as opposed to purely edge-extracted images - human face recognition . such a problem.
5#
發(fā)表于 2025-3-22 08:54:44 | 只看該作者
Implementation of Invariances,. T1 and t1 are similar triangles, T2 and t2 are similar, whereas t1 and t2 are dissimilar. For example, T1 is a scaled and rotated version of t1. T3 is dissimilar to Tl and t1 as it is a scaled, lateral inversion therefore the sequence of internal angles would not be the same. T4 is dissimilar to all of the other triangles.
6#
發(fā)表于 2025-3-22 16:53:33 | 只看該作者
Facial Pattern Recognition,nd, unlike Fourier descriptors, do not require closed boundaries. Moment invariants were first proposed by Hu [HU62]_in 1961 using non-linear combinations of regular(geometric) moments which are invariant under scale, translation, and rotation image transformations.
7#
發(fā)表于 2025-3-22 17:55:38 | 只看該作者
8#
發(fā)表于 2025-3-23 00:27:48 | 只看該作者
Network Training, presents input patterns to the network, compares the resulting outputs with those desired, and then adjusts the network weights accordingly in order to reduce the difference. Unsupervised training requires no’ teacher’: input patterns are applied and the network selforganises by updating its weights according to a pre-defined algorithm.
9#
發(fā)表于 2025-3-23 04:25:07 | 只看該作者
10#
發(fā)表于 2025-3-23 08:06:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
酒泉市| 商南县| 收藏| 项城市| 三穗县| 大田县| 锡林浩特市| 罗定市| 平谷区| 香格里拉县| 双辽市| 青铜峡市| 夏津县| 水城县| 丹东市| 宝丰县| 靖边县| 普定县| 贵定县| 吉水县| 扬中市| 甘孜县| 商河县| 和田县| 扶余县| 东乌| 古蔺县| 嘉定区| 名山县| 太原市| 高唐县| 西安市| 永泰县| 崇义县| 东方市| 陈巴尔虎旗| 清远市| 江津市| 蓝田县| 永顺县| 景泰县|