找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Human Centric Visual Analysis with Deep Learning; Liang Lin,Dongyu Zhang,Wangmeng Zuo Book 2020 Springer Nature Singapore Pte Ltd. 2020 De

[復(fù)制鏈接]
樓主: HARDY
21#
發(fā)表于 2025-3-25 04:32:11 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:56 | 只看該作者
Pedestrian Detection with RPN and Boosted Forestedestrians; therefore, previous leading pedestrian detectors were generally hybrid methods combining handcrafted and deep convolutional features. In this chapter, we propose a very simple but effective baseline for pedestrian detection using an RPN followed by boosted forest on shared high-resolutio
23#
發(fā)表于 2025-3-25 15:28:34 | 只看該作者
Self-supervised Structure-Sensitive Learning for Human Parsing“Look into Person (LIP),” that makes a significant advance in terms of scalability, diversity, and difficulty, a contribution that we feel is crucial for future developments in human-centric analysis. Furthermore, in contrast to the existing efforts to improve feature discriminative capability, we s
24#
發(fā)表于 2025-3-25 17:08:09 | 只看該作者
Instance-Level Human Parsingal difficulty in parsing multiple instances in a single pass. In this chapter, we make the first attempt to explore a detection-free part grouping network (PGN) to efficiently parse multiple people in an image in a single pass. PGN reformulates instance-level human parsing as twinned subtasks that c
25#
發(fā)表于 2025-3-25 21:41:54 | 只看該作者
Video Instance-Level Human Parsinged feature propagation from other consecutive frames between two key frames. Specifically, ATEN first incorporates a Parsin-RCNN to produce the instance-level parsing result for each key frame, which integrates global human parsing and instance-level human segmentation into a unified model. To balan
26#
發(fā)表于 2025-3-26 03:38:16 | 只看該作者
27#
發(fā)表于 2025-3-26 08:08:59 | 只看該作者
Face Verificationg number of facial images of different individuals. By naturally combining two recently emerging techniques, active learning (AL) and self-paced learning (SPL), the proposed framework is capable of automatically annotating new instances and incorporating them into the training with weak expert recer
28#
發(fā)表于 2025-3-26 10:58:29 | 只看該作者
29#
發(fā)表于 2025-3-26 15:34:21 | 只看該作者
30#
發(fā)表于 2025-3-26 17:43:19 | 只看該作者
Face Verification the mixture of SPL and AL effectively improves not only the classifier accuracy but also the robustness against noisy data compared to the existing AL/SPL methods (.[2019] IEEE. Reprinted, with permission, from [.]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上高县| 大英县| 治多县| 崇文区| 县级市| 宕昌县| 彭阳县| 宁夏| 澄城县| 鄢陵县| 牡丹江市| 海淀区| 信丰县| 清原| 应城市| 中西区| 社旗县| 镇安县| 共和县| 旺苍县| 新余市| 无棣县| 赣榆县| 满洲里市| 南投市| 赫章县| 荥阳市| 永丰县| 楚雄市| 福鼎市| 湟源县| 滕州市| 石景山区| 龙州县| 阜平县| 明溪县| 无极县| 梁山县| 吉木乃县| 洱源县| 四平市|