找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Human Action Analysis with Randomized Trees; Gang Yu,Junsong Yuan,Zicheng Liu Book 2015 The Author(s) 2015 Action Categorization.Branch-an

[復(fù)制鏈接]
查看: 40384|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:20:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Human Action Analysis with Randomized Trees
編輯Gang Yu,Junsong Yuan,Zicheng Liu
視頻videohttp://file.papertrans.cn/429/428919/428919.mp4
概述Step-by-step introduction to help the readers understand the topic of human action analysis.Presents one basic algorithm that can used in various applications.Practical examples and applications will
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Human Action Analysis with Randomized Trees;  Gang Yu,Junsong Yuan,Zicheng Liu Book 2015 The Author(s) 2015 Action Categorization.Branch-an
描述This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction. We will also describe techniques for space-time action localization including branch-and-bound sub-volume search and propagative Hough voting.
出版日期Book 2015
關(guān)鍵詞Action Categorization; Branch-and-bound; Hough Voting; Human Action Analysis; Human Action Localization;
版次1
doihttps://doi.org/10.1007/978-981-287-167-1
isbn_softcover978-981-287-166-4
isbn_ebook978-981-287-167-1Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s) 2015
The information of publication is updating

書目名稱Human Action Analysis with Randomized Trees影響因子(影響力)




書目名稱Human Action Analysis with Randomized Trees影響因子(影響力)學(xué)科排名




書目名稱Human Action Analysis with Randomized Trees網(wǎng)絡(luò)公開度




書目名稱Human Action Analysis with Randomized Trees網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Human Action Analysis with Randomized Trees被引頻次




書目名稱Human Action Analysis with Randomized Trees被引頻次學(xué)科排名




書目名稱Human Action Analysis with Randomized Trees年度引用




書目名稱Human Action Analysis with Randomized Trees年度引用學(xué)科排名




書目名稱Human Action Analysis with Randomized Trees讀者反饋




書目名稱Human Action Analysis with Randomized Trees讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:20 | 只看該作者
2191-8112 rious applications.Practical examples and applications will This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, su
板凳
發(fā)表于 2025-3-22 02:41:39 | 只看該作者
地板
發(fā)表于 2025-3-22 07:18:43 | 只看該作者
Human Action Prediction with Multiclass Balanced Random Forest,ilities. The prediction is done simultaneously for multiple classes, which saves both the memory and computational cost. The experiments show that our algorithm significantly outperforms the state-of-the-art for the human activity prediction problem.
5#
發(fā)表于 2025-3-22 09:45:09 | 只看該作者
6#
發(fā)表于 2025-3-22 16:26:42 | 只看該作者
7#
發(fā)表于 2025-3-22 19:11:22 | 只看該作者
Supervised Trees for Human Action Recognition and Detection,human actions. In this chapter, we characterize a video as a collection of spatio-temporal interest points, and locate actions via searching for spatio-temporal video subvolumes of the highest mutual information score toward each action class. A random forest is constructed to efficiently generate d
8#
發(fā)表于 2025-3-22 21:55:39 | 只看該作者
Unsupervised Trees for Human Action Search,a very fast action retrieval system which can effectively locate the subvolumes similar to the query video. Random-indexing-trees-based visual vocabularies are introduced for the database indexing. By increasing the number of vocabularies, the large intra-class variance problem can be relieved despi
9#
發(fā)表于 2025-3-23 01:45:15 | 只看該作者
Propagative Hough Voting to Leverage Contextual Information, insufficient training data are provided. To address this limitation, we propose propagative Hough voting in this chapter. Instead of training a discriminative classifier for local feature voting, we first match labeled feature points to unlabeled feature points, then propagate the label and sptatio
10#
發(fā)表于 2025-3-23 08:20:21 | 只看該作者
Human Action Prediction with Multiclass Balanced Random Forest,ing a spatial-temporal implicit shape model (STISM), which characterizes the space-time structure of the sparse local features extracted from a video. The recognition of human activities is accomplished by pattern matching through STISM. To enable efficient and robust matching, we propose a new rand
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广宁县| 岳池县| 修武县| 百色市| 永德县| 丰顺县| 临西县| 庆阳市| 洪泽县| 新巴尔虎右旗| 西昌市| 名山县| 安达市| 苍梧县| 灵丘县| 洪湖市| 华坪县| 贡觉县| 新民市| 锡林郭勒盟| 确山县| 柳江县| 屏山县| 延长县| 芒康县| 麻栗坡县| 东乡族自治县| 龙陵县| 韩城市| 保山市| 昭觉县| 沁源县| 贵阳市| 曲周县| 蓝田县| 洪湖市| 荔波县| 龙江县| 资中县| 海伦市| 安溪县|