找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: How Many Zeroes?; Counting Solutions o Pinaki Mondal Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license

[復(fù)制鏈接]
查看: 34493|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:11:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)How Many Zeroes?
副標(biāo)題Counting Solutions o
編輯Pinaki Mondal
視頻videohttp://file.papertrans.cn/429/428655/428655.mp4
概述First textbook containing complete proofs of various weighted versions of Bézout‘s theorem, Bernstein‘s theorem and its extension to the affine space.Gives a new proof of, and generalizes, Kushnirenko
叢書(shū)名稱(chēng)CMS/CAIMS Books in Mathematics
圖書(shū)封面Titlebook: How Many Zeroes?; Counting Solutions o Pinaki Mondal Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license
描述.This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field. The text collects and synthesizes a number of works on Bernstein’s theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein’s original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko‘s results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to second-year graduate students. .
出版日期Textbook 2021
關(guān)鍵詞Number of solutions/zeros of systems of polynomials; affine Bezout problem; Bezout‘s theorem; Bernstein
版次1
doihttps://doi.org/10.1007/978-3-030-75174-6
isbn_softcover978-3-030-75176-0
isbn_ebook978-3-030-75174-6Series ISSN 2730-650X Series E-ISSN 2730-6518
issn_series 2730-650X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)How Many Zeroes?影響因子(影響力)




書(shū)目名稱(chēng)How Many Zeroes?影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)How Many Zeroes?網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)How Many Zeroes?網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)How Many Zeroes?被引頻次




書(shū)目名稱(chēng)How Many Zeroes?被引頻次學(xué)科排名




書(shū)目名稱(chēng)How Many Zeroes?年度引用




書(shū)目名稱(chēng)How Many Zeroes?年度引用學(xué)科排名




書(shū)目名稱(chēng)How Many Zeroes?讀者反饋




書(shū)目名稱(chēng)How Many Zeroes?讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:13 | 只看該作者
Pinaki Mondalller, a short hook as a universal joint, and a basal body as a rotary motor. The filament is made up of more than 20,000 flagellin molecules and can grow to several micrometers long but only 20 nanometers thick. The regulation of flagellar assembly and ejection is important for bacterial environment
板凳
發(fā)表于 2025-3-22 03:03:48 | 只看該作者
Pinaki Mondalller, a short hook as a universal joint, and a basal body as a rotary motor. The filament is made up of more than 20,000 flagellin molecules and can grow to several micrometers long but only 20 nanometers thick. The regulation of flagellar assembly and ejection is important for bacterial environment
地板
發(fā)表于 2025-3-22 06:48:28 | 只看該作者
ller, a short hook as a universal joint, and a basal body as a rotary motor. The filament is made up of more than 20,000 flagellin molecules and can grow to several micrometers long but only 20 nanometers thick. The regulation of flagellar assembly and ejection is important for bacterial environment
5#
發(fā)表于 2025-3-22 11:55:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:20:52 | 只看該作者
Pinaki Mondald con- cludes with some Questions for Reviewand Discussion. I also have added a glossary to assist students with unfamiliar terms. This edition offers a greater emphasis on molecular biology and genetics than was present in either of the previous editions. The sequence of topics has also changed so
7#
發(fā)表于 2025-3-22 18:41:52 | 只看該作者
Pinaki Mondaldes with some Questions for Reviewand Discussion. I also have added a glossary to assist students with unfamiliar terms. This edition offers a greater emphasis on molecular biology and genetics than was present in either of the previous editions. The sequence of topics has also changed so that basic
8#
發(fā)表于 2025-3-23 01:01:17 | 只看該作者
9#
發(fā)表于 2025-3-23 05:16:57 | 只看該作者
10#
發(fā)表于 2025-3-23 09:01:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿阳县| 图木舒克市| 宝应县| 五台县| 麟游县| 郎溪县| 建昌县| 分宜县| 洞头县| 西昌市| 灵武市| 麻江县| 阳朔县| 安义县| 沙湾县| 潍坊市| 江口县| 和顺县| 庆云县| 固安县| 岑溪市| 嘉兴市| 蒙山县| 昔阳县| 芜湖县| 岑巩县| 新乐市| 淳安县| 安乡县| 江华| 安泽县| 珠海市| 岳普湖县| 综艺| 武清区| 黔西| 罗城| 渭南市| 阳春市| 南城县| 绥化市|