找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: How Fuzzy Concepts Contribute to Machine Learning; Mahdi Eftekhari,Adel Mehrpooya,Vicen? Torra Book 2022 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 18751|回復(fù): 46
樓主
發(fā)表于 2025-3-21 17:52:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱How Fuzzy Concepts Contribute to Machine Learning
編輯Mahdi Eftekhari,Adel Mehrpooya,Vicen? Torra
視頻videohttp://file.papertrans.cn/429/428612/428612.mp4
概述Recent research on the application of fuzzy and hesitant fuzzy sets in machine learning tasks.Shows how fuzzy concepts can be used to solve multi-criteria decision making challenges raised in machine
叢書名稱Studies in Fuzziness and Soft Computing
圖書封面Titlebook: How Fuzzy Concepts Contribute to Machine Learning;  Mahdi Eftekhari,Adel Mehrpooya,Vicen? Torra Book 2022 The Editor(s) (if applicable) and
描述This book introduces some?contemporary?approaches?on the application of?fuzzy and hesitant fuzzy sets in machine learning tasks such as?classification, clustering and dimension?reduction.?Many?situations?arise?in machine learning algorithms?in?which?applying methods for uncertainty?modeling and?multi-criteria?decision making can lead to?a?better?understanding of?algorithms behavior as well as achieving?good performances.?Specifically,?the present book is a collection of novel viewpoints?on how?fuzzy and?hesitant fuzzy concepts?can be?applied?to?data uncertainty modeling as?well as?being used to solve?multi-criteria decision?making challenges?raised in machine learning problems. Using the multi-criteria decision?making framework, the book shows how different algorithms, rather than?human experts,?are?employed?to determine membership degrees. The book is expected to bring closer?the? communities of pure mathematicians of fuzzy?sets and data scientists.?.
出版日期Book 2022
關(guān)鍵詞Fuzzy Concepts; Machine Learning; Fuzzy Sets; Hesitant Fuzzy Sets; Data Uncertainty Modeling
版次1
doihttps://doi.org/10.1007/978-3-030-94066-9
isbn_softcover978-3-030-94068-3
isbn_ebook978-3-030-94066-9Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱How Fuzzy Concepts Contribute to Machine Learning影響因子(影響力)




書目名稱How Fuzzy Concepts Contribute to Machine Learning影響因子(影響力)學(xué)科排名




書目名稱How Fuzzy Concepts Contribute to Machine Learning網(wǎng)絡(luò)公開(kāi)度




書目名稱How Fuzzy Concepts Contribute to Machine Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱How Fuzzy Concepts Contribute to Machine Learning被引頻次




書目名稱How Fuzzy Concepts Contribute to Machine Learning被引頻次學(xué)科排名




書目名稱How Fuzzy Concepts Contribute to Machine Learning年度引用




書目名稱How Fuzzy Concepts Contribute to Machine Learning年度引用學(xué)科排名




書目名稱How Fuzzy Concepts Contribute to Machine Learning讀者反饋




書目名稱How Fuzzy Concepts Contribute to Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:52:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:33:16 | 只看該作者
Unsupervised Feature Selection Method Based on Sensitivity and Correlation Concepts for Multiclass Pive clustering and the concepts of sensitivity and Pearson’s correlation. We show how this method is employed as the fitness function in a genetic algorithm (GA) in order to evaluate feature subsets. Informally, the method works as follows. First, the sensitivity index of each feature is computed by
地板
發(fā)表于 2025-3-22 07:39:10 | 只看該作者
5#
發(fā)表于 2025-3-22 12:13:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:40 | 只看該作者
Hesitant Fuzzy Decision Tree Approach for Highly Imbalanced Data Classificationd data when the distribution of data samples is not the same in different classes. That is, there is usually a large difference among the number of instances in different classes. If this is the case, learning algorithms, with their goal of maximizing the accuracy of the inferred model, may ignore t
7#
發(fā)表于 2025-3-22 18:42:44 | 只看該作者
8#
發(fā)表于 2025-3-23 00:40:20 | 只看該作者
Ensemble of Feature Selection Methods: A Hesitant Fuzzy Set Based Approach significantly smaller than the number of instances, this is not the case for DNA microarray data. This chapter introduces a feature selection algorithm based on a greedy search, and it uses main concepts from hesitant fuzzy set theory as an heuristic to tackle the feature selection problem for high
9#
發(fā)表于 2025-3-23 04:44:34 | 只看該作者
10#
發(fā)表于 2025-3-23 07:57:42 | 只看該作者
A Hybrid Filter-Based Feature Selection Method via Hesitant Fuzzy and Rough Sets Conceptsthe significant features. In particular, the approach described in this chapter is based on the combination of concepts related to rough set theory to build a feature selection algorithm. The concepts considered include weighted rough sets, fuzzy rough sets, and hesitant fuzzy sets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永济市| 原阳县| 麦盖提县| 镇安县| 汉中市| 明水县| 古蔺县| 黔南| 会同县| 江安县| 大方县| 日土县| 东莞市| 黎平县| 连平县| 长泰县| 常州市| 鞍山市| 门源| 山丹县| 琼结县| 苍溪县| 河池市| 巴楚县| 大港区| 大宁县| 客服| 吐鲁番市| 绥江县| 吉林市| 永登县| 南开区| 博白县| 南陵县| 防城港市| 黔东| 抚顺县| 十堰市| 元谋县| 察雅县| 湘潭县|