找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hormonal Carcinogenesis V; Jonathan J. Li,Sara A. Li,Thierry Maudelonde Book 2008 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
查看: 28596|回復(fù): 68
樓主
發(fā)表于 2025-3-21 19:09:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hormonal Carcinogenesis V
編輯Jonathan J. Li,Sara A. Li,Thierry Maudelonde
視頻videohttp://file.papertrans.cn/429/428280/428280.mp4
概述A special emphasis will continue to be placed on the two major endocrine-related cancers, that is, breast and prostate..Other highly relevant cancers to be addressed are ovarian and endometrial..Emerg
叢書名稱Advances in Experimental Medicine and Biology
圖書封面Titlebook: Hormonal Carcinogenesis V;  Jonathan J. Li,Sara A. Li,Thierry Maudelonde Book 2008 The Editor(s) (if applicable) and The Author(s), under e
描述.Information gathered from cell-free systems, cell cultures, animal models, and human studies, together will (1) provide important insights to our understanding of hormonal cancer causation, development, and prevention; (2) be the primary objective of these Symposia..
出版日期Book 2008
關(guān)鍵詞Breast cancer; Cancer Prevention; Endometrial Cancer; Hormonal Carcinogenesis; Lung Cancer; Mammary Cance
版次1
doihttps://doi.org/10.1007/978-0-387-69080-3
isbn_softcover978-1-4419-2399-8
isbn_ebook978-0-387-69080-3Series ISSN 0065-2598 Series E-ISSN 2214-8019
issn_series 0065-2598
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Busines
The information of publication is updating

書目名稱Hormonal Carcinogenesis V影響因子(影響力)




書目名稱Hormonal Carcinogenesis V影響因子(影響力)學(xué)科排名




書目名稱Hormonal Carcinogenesis V網(wǎng)絡(luò)公開度




書目名稱Hormonal Carcinogenesis V網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hormonal Carcinogenesis V被引頻次




書目名稱Hormonal Carcinogenesis V被引頻次學(xué)科排名




書目名稱Hormonal Carcinogenesis V年度引用




書目名稱Hormonal Carcinogenesis V年度引用學(xué)科排名




書目名稱Hormonal Carcinogenesis V讀者反饋




書目名稱Hormonal Carcinogenesis V讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:31:49 | 只看該作者
Bernard Weinstein of advantages. It provides a natural, fast, hands free, eyes free, location free input medium. However, there are many as yet unsolved problems that prevent routine use of speech as an input device by non-experts. These include cost, real time response, speaker independence, robustness to variation
地板
發(fā)表于 2025-3-22 08:24:34 | 只看該作者
Michael F. Clarke of advantages. It provides a natural, fast, hands free, eyes free, location free input medium. However, there are many as yet unsolved problems that prevent routine use of speech as an input device by non-experts. These include cost, real time response, speaker independence, robustness to variation
5#
發(fā)表于 2025-3-22 10:03:12 | 只看該作者
Bryan T. Hennessy,Mandi Murph,Meera Nanjundan,Mark Carey,Nelly Auersperg,Jonas Almeida,Kevin R. Coom generators, its likelihood evaluation, its parameter estimation via the EM algorithm, and its state decoding via the Viterbi algorithm or a dynamic programming procedure. We then provide discussions on the use of the HMM as a generative model for speech feature sequences and its use as the basis fo
6#
發(fā)表于 2025-3-22 13:27:35 | 只看該作者
Patrick Salaun,Yoann Rannou,Prigent Claudehe RNN, which exploits the structure called long-short-term memory (LSTM), and analyzes its strengths over the basic RNN both in terms of model construction and of practical applications including some latest speech recognition results. Finally, we analyze the RNN as a bottom-up, discriminative, dyn
7#
發(fā)表于 2025-3-22 17:29:10 | 只看該作者
Vivian W. Pinnibe the principle of maximum likelihood and the related EM algorithm for parameter estimation of the GMM in some detail as it is still a widely used method in speech recognition. We finally discuss a serious weakness of using GMMs in acoustic modeling for speech recognition, motivating new models an
8#
發(fā)表于 2025-3-23 00:34:28 | 只看該作者
Gilbert H. Smith generators, its likelihood evaluation, its parameter estimation via the EM algorithm, and its state decoding via the Viterbi algorithm or a dynamic programming procedure. We then provide discussions on the use of the HMM as a generative model for speech feature sequences and its use as the basis fo
9#
發(fā)表于 2025-3-23 04:22:11 | 只看該作者
Robert B. Clarke,Andrew H. Sims,Anthony Howellhe RNN, which exploits the structure called long-short-term memory (LSTM), and analyzes its strengths over the basic RNN both in terms of model construction and of practical applications including some latest speech recognition results. Finally, we analyze the RNN as a bottom-up, discriminative, dyn
10#
發(fā)表于 2025-3-23 06:42:24 | 只看該作者
David J. Mulholland,Jing Jiao,Hong Wuhe RNN, which exploits the structure called long-short-term memory (LSTM), and analyzes its strengths over the basic RNN both in terms of model construction and of practical applications including some latest speech recognition results. Finally, we analyze the RNN as a bottom-up, discriminative, dyn
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎城县| 丁青县| 个旧市| 南宁市| 鹤壁市| 剑阁县| 石楼县| 永康市| 嘉义市| 济源市| 浑源县| 新昌县| 定襄县| 大安市| 长宁区| 界首市| 南通市| 昆山市| 临泽县| 丹阳市| 平乡县| 霍城县| 晋宁县| 洪湖市| 奇台县| 郯城县| 万荣县| 达孜县| 资溪县| 容城县| 亳州市| 陆川县| 武强县| 平武县| 吉木萨尔县| 房山区| 诸城市| 巴中市| 乐安县| 星子县| 祁东县|