找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homotopy Theory with Bornological Coarse Spaces; Ulrich Bunke,Alexander Engel Book 2020 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
查看: 11124|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:28:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Homotopy Theory with Bornological Coarse Spaces
編輯Ulrich Bunke,Alexander Engel
視頻videohttp://file.papertrans.cn/429/428179/428179.mp4
概述The first book devoted to a new branch of research; there is currently no comparable book.Provides a quick overview of the basic concepts of coarse geometry in their natural generality.Describes an ap
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Homotopy Theory with Bornological Coarse Spaces;  Ulrich Bunke,Alexander Engel Book 2020 The Editor(s) (if applicable) and The Author(s), u
描述.Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories.. .The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories..
出版日期Book 2020
關(guān)鍵詞Assembly Maps; C*-categories; Coarse Geometry; Coarse Homology; K-theory
版次1
doihttps://doi.org/10.1007/978-3-030-51335-1
isbn_softcover978-3-030-51334-4
isbn_ebook978-3-030-51335-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Homotopy Theory with Bornological Coarse Spaces影響因子(影響力)




書目名稱Homotopy Theory with Bornological Coarse Spaces影響因子(影響力)學(xué)科排名




書目名稱Homotopy Theory with Bornological Coarse Spaces網(wǎng)絡(luò)公開度




書目名稱Homotopy Theory with Bornological Coarse Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Homotopy Theory with Bornological Coarse Spaces被引頻次




書目名稱Homotopy Theory with Bornological Coarse Spaces被引頻次學(xué)科排名




書目名稱Homotopy Theory with Bornological Coarse Spaces年度引用




書目名稱Homotopy Theory with Bornological Coarse Spaces年度引用學(xué)科排名




書目名稱Homotopy Theory with Bornological Coarse Spaces讀者反饋




書目名稱Homotopy Theory with Bornological Coarse Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:59:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:33:40 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:19 | 只看該作者
Motivic Coarse SpacesIn this chapter we introduce the .-category of motivic coarse spaces .. Our goal is to do homotopy theory with bornological coarse spaces. To this end we first complete the category of bornological coarse spaces formally and then implement the desired geometric properties through localizations.
6#
發(fā)表于 2025-3-22 16:43:21 | 只看該作者
7#
發(fā)表于 2025-3-22 19:46:36 | 只看該作者
First Examples and Comparison of Coarse Homology TheoriesThe notion of a coarse homology theory was introduced in Definition .. We first show that the condition of .-continuity can be enforced. This result may be helpful for the construction of coarse homology theories. We furthermore discuss some additional additivity properties for coarse homology theories.
8#
發(fā)表于 2025-3-22 22:33:21 | 只看該作者
9#
發(fā)表于 2025-3-23 05:27:04 | 只看該作者
10#
發(fā)表于 2025-3-23 06:42:36 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/h/image/428179.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磴口县| 宁武县| 东港市| 承德县| 棋牌| 重庆市| 仙居县| 屯昌县| 苏尼特右旗| 乐业县| 芦山县| 大方县| 荆州市| 和龙市| 桦甸市| 石嘴山市| 苏尼特左旗| 迁安市| 措勤县| 望城县| 郸城县| 综艺| 渝中区| 榆树市| 九龙县| 上饶县| 开封市| 泰顺县| 同德县| 鱼台县| 梁河县| 抚远县| 北流市| 江孜县| 乌兰浩特市| 肥城市| 灵宝市| 双桥区| 临颍县| 建德市| 张家界市|