找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homotopy Limits, Completions and Localizations; Aldridge K. Bousfield,Daniel M. Kan Book 1972 Springer-Verlag Berlin Heidelberg 1972 Finit

[復(fù)制鏈接]
樓主: 誓約
31#
發(fā)表于 2025-3-27 00:10:57 | 只看該作者
32#
發(fā)表于 2025-3-27 02:05:58 | 只看該作者
Homotopy direct limitsIn this chapter we discuss .. Our account will be brief as many of the results in this chapter are . to results in Chapter XI. Also, a construction similar to the homotopy direct limit was given by [Segal].
33#
發(fā)表于 2025-3-27 07:04:56 | 只看該作者
34#
發(fā)表于 2025-3-27 10:42:12 | 只看該作者
Erratum to: The R-completion of a spaceIn this chapter we define, for every space X and (commutative) ring R, a functorial . of X and prove some of its basic properties. We also show that there is a corresponding notion of ..
35#
發(fā)表于 2025-3-27 16:43:09 | 只看該作者
36#
發(fā)表于 2025-3-27 18:48:53 | 只看該作者
Erratum to: p-completions of nilpotent spacesugh they differ for more general spaces. The basic properties of p-profinite completions are well-known for ., and the main purpose of this chapter is to obtain similar results for p-completions of arbitrary . spaces.
37#
發(fā)表于 2025-3-28 00:31:03 | 只看該作者
38#
發(fā)表于 2025-3-28 04:12:04 | 只看該作者
0075-8434 t to usual finiteness condition, the R-completion coincides up to homotopy, with the p-profinite completion of Quillen and Sullivan; for R a subring of the rationals, the R-completion coincides up to homotopy, with the localizations of Quillen, Sullivan and others. In part II of these notes, the aut
39#
發(fā)表于 2025-3-28 07:19:14 | 只看該作者
Book 1972 finiteness condition, the R-completion coincides up to homotopy, with the p-profinite completion of Quillen and Sullivan; for R a subring of the rationals, the R-completion coincides up to homotopy, with the localizations of Quillen, Sullivan and others. In part II of these notes, the authors have
40#
發(fā)表于 2025-3-28 11:17:39 | 只看該作者
0075-8434 hors have assembled some results on towers of fibrations, cosimplicial spaces and homotopy limits which were needed in the discussions of part I, but which are of some interest in themselves.978-3-540-06105-2978-3-540-38117-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰安市| 综艺| 东乡族自治县| 焦作市| 青河县| 京山县| 古蔺县| 修水县| 尼玛县| 泾源县| 平凉市| 阿瓦提县| 天等县| 德阳市| 阿拉善左旗| 建瓯市| 肃宁县| 青海省| 潍坊市| 扎兰屯市| 崇文区| 湄潭县| 开封县| 五台县| 宜宾市| 闽清县| 瓮安县| 拜泉县| 贺州市| 股票| 浠水县| 渝北区| 峨山| 浙江省| 新化县| 庄浪县| 青川县| 鄢陵县| 正阳县| 乌鲁木齐市| 外汇|