找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homotopy Analysis Method in Nonlinear Differential Equations; Shijun Liao Book 2012 Higher Education Press,Beijng and Springer-Verlag GmbH

[復(fù)制鏈接]
樓主: CULT
41#
發(fā)表于 2025-3-28 14:59:41 | 只看該作者
42#
發(fā)表于 2025-3-28 19:12:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:55:39 | 只看該作者
44#
發(fā)表于 2025-3-29 04:38:36 | 只看該作者
Basic Ideas of the Homotopy Analysis Method the concept of the homotopy, the flexibility of constructing equations for continuous variations, the way to guarantee convergence of solution series, the essence of the convergence-control parameter .., the methods to accelerate convergence, and so on. The corresponding Mathematica codes are given
45#
發(fā)表于 2025-3-29 07:15:58 | 只看該作者
Optimal Homotopy Analysis Method, which logically contains the basic optimal HAM with only one convergence-control parameter and also the optimal HAM with an infinite number of parameters. It is found that approximations given by the optimal HAMs converge fast in general. Especially, the basic optimal HAM mostly gives good enough
46#
發(fā)表于 2025-3-29 12:12:56 | 只看該作者
Systematic Descriptions and Related Theoremshomotopy-derivative operator and deformation equations are proved, which are helpful to gain high-order approximations. Some theorems of convergence are proved, and the methods to control and accelerate convergence are generally described. A few of open questions are discussed.
47#
發(fā)表于 2025-3-29 18:51:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:50:31 | 只看該作者
49#
發(fā)表于 2025-3-30 00:08:43 | 只看該作者
50#
發(fā)表于 2025-3-30 04:43:36 | 只看該作者
Nonlinear Boundary-value Problems with Multiple Solutionsthematica package BVPh (version 1.0) for .th-order nonlinear boundary-value equations . in a finite interval 0≤.≤., subject to the . linear boundary conditions ., (1≤.≤.), where . is a .th-order nonlinear differential operator, . is a linear operator, γ. is a constant, respectively. Especially, the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦淖尔市| 承德县| 陆川县| 分宜县| 体育| 兖州市| 大邑县| 疏勒县| 锦州市| 宜州市| 社会| 垦利县| 香河县| 烟台市| 岑溪市| 饶阳县| 乌兰察布市| 呈贡县| 宝坻区| 灯塔市| 辽宁省| 鄱阳县| 仪陇县| 尼玛县| 海淀区| 藁城市| 岚皋县| 山东| 皋兰县| 郧西县| 宜黄县| 浠水县| 宜昌市| 包头市| 镇巴县| 夹江县| 许昌县| 开鲁县| 徐闻县| 永清县| 全州县|