找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homotopy Analysis Method in Nonlinear Differential Equations; Shijun Liao Book 2012 Higher Education Press,Beijng and Springer-Verlag GmbH

[復(fù)制鏈接]
樓主: CULT
41#
發(fā)表于 2025-3-28 14:59:41 | 只看該作者
42#
發(fā)表于 2025-3-28 19:12:59 | 只看該作者
43#
發(fā)表于 2025-3-28 23:55:39 | 只看該作者
44#
發(fā)表于 2025-3-29 04:38:36 | 只看該作者
Basic Ideas of the Homotopy Analysis Method the concept of the homotopy, the flexibility of constructing equations for continuous variations, the way to guarantee convergence of solution series, the essence of the convergence-control parameter .., the methods to accelerate convergence, and so on. The corresponding Mathematica codes are given
45#
發(fā)表于 2025-3-29 07:15:58 | 只看該作者
Optimal Homotopy Analysis Method, which logically contains the basic optimal HAM with only one convergence-control parameter and also the optimal HAM with an infinite number of parameters. It is found that approximations given by the optimal HAMs converge fast in general. Especially, the basic optimal HAM mostly gives good enough
46#
發(fā)表于 2025-3-29 12:12:56 | 只看該作者
Systematic Descriptions and Related Theoremshomotopy-derivative operator and deformation equations are proved, which are helpful to gain high-order approximations. Some theorems of convergence are proved, and the methods to control and accelerate convergence are generally described. A few of open questions are discussed.
47#
發(fā)表于 2025-3-29 18:51:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:50:31 | 只看該作者
49#
發(fā)表于 2025-3-30 00:08:43 | 只看該作者
50#
發(fā)表于 2025-3-30 04:43:36 | 只看該作者
Nonlinear Boundary-value Problems with Multiple Solutionsthematica package BVPh (version 1.0) for .th-order nonlinear boundary-value equations . in a finite interval 0≤.≤., subject to the . linear boundary conditions ., (1≤.≤.), where . is a .th-order nonlinear differential operator, . is a linear operator, γ. is a constant, respectively. Especially, the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌珠穆沁旗| 天全县| 芜湖市| 连江县| 建阳市| 进贤县| 鄂尔多斯市| 阆中市| 孟州市| 通榆县| 麟游县| 兴海县| 黄梅县| 迁西县| 青州市| 同仁县| 青铜峡市| 天峨县| 滨海县| 富源县| 柳林县| 揭阳市| 和平区| 庆安县| 岑溪市| 宾川县| 历史| 保德县| 石台县| 邹城市| 唐山市| 桦川县| 梁山县| 东台市| 吉安市| 监利县| 冕宁县| 亚东县| 浪卡子县| 井研县| 香格里拉县|