找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homology of Linear Groups; Kevin P. Knudson Book 2001 Birkh?user Verlag 2001 Cohomology.Homotopy.K-theory.algebra.cohomology of groups.hom

[復(fù)制鏈接]
查看: 24431|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:10:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Homology of Linear Groups
編輯Kevin P. Knudson
視頻videohttp://file.papertrans.cn/429/428151/428151.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Homology of Linear Groups;  Kevin P. Knudson Book 2001 Birkh?user Verlag 2001 Cohomology.Homotopy.K-theory.algebra.cohomology of groups.hom
描述Daniel Quillen‘s definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen‘s fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology.
出版日期Book 2001
關(guān)鍵詞Cohomology; Homotopy; K-theory; algebra; cohomology of groups; homology; homotopy theory
版次1
doihttps://doi.org/10.1007/978-3-0348-8338-2
isbn_softcover978-3-0348-9523-1
isbn_ebook978-3-0348-8338-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Verlag 2001
The information of publication is updating

書目名稱Homology of Linear Groups影響因子(影響力)




書目名稱Homology of Linear Groups影響因子(影響力)學(xué)科排名




書目名稱Homology of Linear Groups網(wǎng)絡(luò)公開度




書目名稱Homology of Linear Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Homology of Linear Groups被引頻次




書目名稱Homology of Linear Groups被引頻次學(xué)科排名




書目名稱Homology of Linear Groups年度引用




書目名稱Homology of Linear Groups年度引用學(xué)科排名




書目名稱Homology of Linear Groups讀者反饋




書目名稱Homology of Linear Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:14:43 | 只看該作者
地板
發(fā)表于 2025-3-22 08:36:22 | 只看該作者
Stability,at the map .is an isomorphism for . ≥ .(.)? The answer is certainly no if for example . is the free abelian group of rank ., but there are many examples for which stability does happen. For example, there are stability results for the sequenceof symmetric groups [.] and also for the mapping class gr
5#
發(fā)表于 2025-3-22 10:11:56 | 只看該作者
Low-dimensional Results, .(.(.),?) ? .(.(.),?) for . local with infinite residue field. Thus, one need only consider the former group. In this case, Suslin completely described the structure of .(.(.),?) —it surjects onto the second Milnor .-group . (.) and the kernel of this map is the image of .(.(.),?).
6#
發(fā)表于 2025-3-22 14:16:36 | 只看該作者
Rank One Groups,known tiling of the hyperbolic plane by .(?)-translates of an ideal triangle (see, e.g. [.], p. 215) and there is the Bruhat-Tits tree associated to a field with discrete valuation. Often, the action implies something about the structure of the group such as the existence of an amalgamated free prod
7#
發(fā)表于 2025-3-22 18:47:00 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/h/image/428151.jpg
8#
發(fā)表于 2025-3-22 23:18:37 | 只看該作者
978-3-0348-9523-1Birkh?user Verlag 2001
9#
發(fā)表于 2025-3-23 04:17:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:49:25 | 只看該作者
Low-dimensional Results, .(.(.),?) ? .(.(.),?) for . local with infinite residue field. Thus, one need only consider the former group. In this case, Suslin completely described the structure of .(.(.),?) —it surjects onto the second Milnor .-group . (.) and the kernel of this map is the image of .(.(.),?).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
璧山县| 遂川县| 绿春县| 山阴县| 夹江县| 吉安县| 清苑县| 香河县| 鹤峰县| 中山市| 富川| 鞍山市| 新巴尔虎右旗| 平远县| 许昌县| 十堰市| 武夷山市| 周宁县| 沁源县| 玉田县| 沙坪坝区| 永仁县| 许昌县| 精河县| 老河口市| 昌江| 沁源县| 福州市| 克拉玛依市| 景谷| 赤峰市| 呼玛县| 博白县| 府谷县| 黄山市| 竹山县| 孟津县| 遂溪县| 丹棱县| 贡山| 和田市|