找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homological Mirror Symmetry and Tropical Geometry; Ricardo Castano-Bernard,Fabrizio Catanese,Ilia Zha Book 2014 Springer International Pub

[復制鏈接]
查看: 42104|回復: 41
樓主
發(fā)表于 2025-3-21 17:30:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Homological Mirror Symmetry and Tropical Geometry
編輯Ricardo Castano-Bernard,Fabrizio Catanese,Ilia Zha
視頻videohttp://file.papertrans.cn/429/428138/428138.mp4
叢書名稱Lecture Notes of the Unione Matematica Italiana
圖書封面Titlebook: Homological Mirror Symmetry and Tropical Geometry;  Ricardo Castano-Bernard,Fabrizio Catanese,Ilia Zha Book 2014 Springer International Pub
描述The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.
出版日期Book 2014
關鍵詞14J33,53D37,14T05,14N35,14D24; Donaldon-Thomas invariants; Fukaya category; Homological Mirror Symmetry
版次1
doihttps://doi.org/10.1007/978-3-319-06514-4
isbn_softcover978-3-319-06513-7
isbn_ebook978-3-319-06514-4Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Homological Mirror Symmetry and Tropical Geometry影響因子(影響力)




書目名稱Homological Mirror Symmetry and Tropical Geometry影響因子(影響力)學科排名




書目名稱Homological Mirror Symmetry and Tropical Geometry網絡公開度




書目名稱Homological Mirror Symmetry and Tropical Geometry網絡公開度學科排名




書目名稱Homological Mirror Symmetry and Tropical Geometry被引頻次




書目名稱Homological Mirror Symmetry and Tropical Geometry被引頻次學科排名




書目名稱Homological Mirror Symmetry and Tropical Geometry年度引用




書目名稱Homological Mirror Symmetry and Tropical Geometry年度引用學科排名




書目名稱Homological Mirror Symmetry and Tropical Geometry讀者反饋




書目名稱Homological Mirror Symmetry and Tropical Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:52:47 | 只看該作者
Lecture Notes of the Unione Matematica Italianahttp://image.papertrans.cn/h/image/428138.jpg
板凳
發(fā)表于 2025-3-22 04:29:21 | 只看該作者
Moduli Stacks of Bundles on Local Surfaces,We give an explicit groupoid presentation of certain stacks of vector bundles on formal neighborhoods of rational curves inside algebraic surfaces. The presentation involves a M?bius type action of an automorphism group on a space of extensions.
地板
發(fā)表于 2025-3-22 04:43:37 | 只看該作者
5#
發(fā)表于 2025-3-22 09:03:54 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:31 | 只看該作者
7#
發(fā)表于 2025-3-22 20:20:29 | 只看該作者
Notes on a New Construction of Hyperkahler Metrics, Gaiotto and Greg Moore. The key ingredient in the construction is a collection of integers which govern “quantum corrections” to the metric, and which obey the wall-crossing formula of Kontsevich and Soibelman. The construction is not yet mathematically rigorous; I discuss some of what would be required to make it so.
8#
發(fā)表于 2025-3-22 23:49:17 | 只看該作者
978-3-319-06513-7Springer International Publishing Switzerland 2014
9#
發(fā)表于 2025-3-23 04:50:48 | 只看該作者
Homological Mirror Symmetry and Tropical Geometry978-3-319-06514-4Series ISSN 1862-9113 Series E-ISSN 1862-9121
10#
發(fā)表于 2025-3-23 08:57:33 | 只看該作者
seitigung der w?hrend der Weiterverarbeitung der Daten entstandenen Fehler. Ein noch offenes Problem in diesem Bereich ist die Erkennung und Beseitigung von Linien, die in der Realit?t die gleiche Grenze darstellen sollen, aber doppelt digitalisiert vorliegen. Dieses Problem tritt vor allem bei der
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 08:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平南县| 辽源市| 陕西省| 财经| 诸暨市| 洮南市| 蓬安县| 商南县| 龙游县| 齐河县| 福贡县| 嘉义县| 博爱县| 湘阴县| 宜都市| 凯里市| 子洲县| 保山市| 溆浦县| 兰西县| 闸北区| 拉萨市| 桦川县| 吐鲁番市| 岚皋县| 商河县| 盐城市| 阿巴嘎旗| 南靖县| 临江市| 南京市| 龙游县| 织金县| 芜湖市| 石门县| 靖西县| 梓潼县| 西青区| 崇义县| 邵东县| 乡宁县|