找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Homogenization of Partial Differential Equations; Vladimir A. Marchenko,Evgueni Ya. Khruslov Book 2006 Birkh?user Boston 2006 Boundary val

[復(fù)制鏈接]
樓主: BRISK
11#
發(fā)表于 2025-3-23 13:37:56 | 只看該作者
degree of instability. At times, it even looked as though it might not stay a?oat. Thankfully, several early boarders remained ?rmly anchored. Other authors were co-opted later, some at relatively short notice, one or two of them under mild duress. We 978-90-481-6974-0978-1-4020-3826-6Series ISSN 0924-5499 Series E-ISSN 2215-0072
12#
發(fā)表于 2025-3-23 15:53:33 | 只看該作者
1544-9998 nhomogeneous media with their corresponding homogenized models are provided. Graduate students, applied mathematicians, physicists, and engineers will benefit from this monograph, which may be used in the class978-0-8176-4468-0Series ISSN 1544-9998 Series E-ISSN 2197-1846
13#
發(fā)表于 2025-3-23 21:22:59 | 只看該作者
Introduction, or close to periodic, structures depending on a single small parameter), in this book we study phenomena in media of arbitrary microstructure characterized by several small parameters (or even more complicated media). For such media, homogenized models of physical processes may have various forms d
14#
發(fā)表于 2025-3-23 22:39:22 | 只看該作者
The Dirichlet Boundary Value Problem in Strongly Perforated Domains with Fine-Grained Boundary,l. Namely, we consider strongly perforated domains (domains with fine-grained boundary) having the following structure: . where Ω is a fixed domain in ?. and . (i=1,2, …s) (“grains”) are disjoint closed sets of decreasing, as .→∞, diameter; see Figure 2.1.
15#
發(fā)表于 2025-3-24 03:06:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:13:50 | 只看該作者
17#
發(fā)表于 2025-3-24 14:34:28 | 只看該作者
The Neumann Boundary Value Problems in Strongly Perforated Domains,ider domains of three types: strongly connected domains, weakly connected domains, and domains with accumulators (traps). We will introduce quantitative mesoscopic (mean local) characteristics of domains (conductivity tensor and connectedness matrix) and derive characteristics of domains (conductivi
18#
發(fā)表于 2025-3-24 16:44:46 | 只看該作者
19#
發(fā)表于 2025-3-24 19:17:01 | 只看該作者
20#
發(fā)表于 2025-3-25 02:02:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿邑县| 教育| 安远县| 呈贡县| 水富县| 宁晋县| 获嘉县| 宣汉县| 平利县| 和龙市| 宁夏| 平谷区| 永修县| 蚌埠市| 义乌市| 东台市| 宣化县| 深泽县| 巴塘县| 大埔县| 通许县| 洪湖市| 侯马市| 墨玉县| 云霄县| 连山| 通许县| 长顺县| 察隅县| 于都县| 利川市| 德昌县| 云林县| 慈溪市| 陆河县| 汝阳县| 井冈山市| 攀枝花市| 山阴县| 砀山县| 宜春市|