找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holzmann/Meyer/Schumpich Technische Mechanik Festigkeitslehre; Holm Altenbach Textbook 201612th edition Springer Fachmedien Wiesbaden 2016

[復(fù)制鏈接]
樓主: 表范圍
11#
發(fā)表于 2025-3-23 13:18:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:44:29 | 只看該作者
13#
發(fā)表于 2025-3-23 21:13:33 | 只看該作者
,Einführung,praktischen Aufgaben überlagern lassen. Nach der exemplarischen verbalen Diskussion der Grundbeanspruchungen wird noch das Schnittprinzip eingeführt, welches erst die inneren Beanspruchungsgr??en ?sichtbar“ macht.
14#
發(fā)表于 2025-3-23 23:31:53 | 只看該作者
selbstst?ndig erfolgreich?in den Stoff einzuarbeiten. Die aktuelle Auflage wurde sprachlich überarbeitet, übersichtlicher gestaltet und es wurden konstruktive Hinweise aus der Leserschaft berücksichtigt..978-3-658-14723-5
15#
發(fā)表于 2025-3-24 06:07:27 | 只看該作者
Textbook 201612th editionln sich mit den theoretischen Grundlagen ab. Dieses didaktische Konzept erm?glicht es, sich selbstst?ndig erfolgreich?in den Stoff einzuarbeiten. Die aktuelle Auflage wurde sprachlich überarbeitet, übersichtlicher gestaltet und es wurden konstruktive Hinweise aus der Leserschaft berücksichtigt..
16#
發(fā)表于 2025-3-24 07:40:47 | 只看該作者
17#
發(fā)表于 2025-3-24 10:57:05 | 只看該作者
,Torsion prismatischer St?be,Ein weiterer Grundbeanspruchungsfall ist die Torsion. Zun?chst wird die Torsion gerader St?be analysiert. Den Abschluss bilden Torsionsbeanspruchungen gekrümmter St?be, die am Beispiel zylindrischer Scheibenfedern behandelt werden.
18#
發(fā)表于 2025-3-24 15:48:47 | 只看該作者
Rotationssymmetrischer Spannungszustand in Scheiben,Rotationssymmetrische Spannungszust?nde in Scheiben lassen sich elementar analysieren, da eine zweidimensionale Analyse notwendig ist, aber bei Rotationssymmetrie das Problem auf ein eindimensionales reduziert werden kann. Dies wird an ausgew?hlten Beispielen nachgewiesen, wobei diese sich auf dickwandige zylindrische Beh?lter beziehen.
19#
發(fā)表于 2025-3-24 23:01:51 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛教| 呈贡县| 利川市| 时尚| 赫章县| 宜川县| 崇仁县| 政和县| 建瓯市| 崇礼县| 平和县| 兰州市| 郴州市| 贺兰县| 孟州市| 翁源县| 芮城县| 浦北县| 永川市| 泽州县| 二连浩特市| 平罗县| 克拉玛依市| 沁源县| 福鼎市| 黄浦区| 淳安县| 安丘市| 铅山县| 遂平县| 九龙县| 盘山县| 侯马市| 黎城县| 法库县| 秦皇岛市| 郎溪县| 鄢陵县| 陈巴尔虎旗| 砀山县| 梅河口市|