找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Functions in the Plane and n-dimensional Space; Klaus Gürlebeck,Klaus Habetha,Wolfgang Spr??ig Textbook 2008 Birkh?user Basel

[復(fù)制鏈接]
查看: 46835|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:00:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Holomorphic Functions in the Plane and n-dimensional Space
編輯Klaus Gürlebeck,Klaus Habetha,Wolfgang Spr??ig
視頻videohttp://file.papertrans.cn/428/427953/427953.mp4
概述First textbook on elementary level introducing to classical complex analysis and its generalizations at the same time.Includes supplementary material:
圖書封面Titlebook: Holomorphic Functions in the Plane and n-dimensional Space;  Klaus Gürlebeck,Klaus Habetha,Wolfgang Spr??ig Textbook 2008 Birkh?user Basel
描述.Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter..
出版日期Textbook 2008
關(guān)鍵詞Clifford algebra; Clifford analysis; Complex analysis; holomorphic function; orthogonal decomposition
版次1
doihttps://doi.org/10.1007/978-3-7643-8272-8
isbn_softcover978-3-7643-8271-1
isbn_ebook978-3-7643-8272-8
copyrightBirkh?user Basel 2008
The information of publication is updating

書目名稱Holomorphic Functions in the Plane and n-dimensional Space影響因子(影響力)




書目名稱Holomorphic Functions in the Plane and n-dimensional Space影響因子(影響力)學(xué)科排名




書目名稱Holomorphic Functions in the Plane and n-dimensional Space網(wǎng)絡(luò)公開度




書目名稱Holomorphic Functions in the Plane and n-dimensional Space網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Holomorphic Functions in the Plane and n-dimensional Space被引頻次




書目名稱Holomorphic Functions in the Plane and n-dimensional Space被引頻次學(xué)科排名




書目名稱Holomorphic Functions in the Plane and n-dimensional Space年度引用




書目名稱Holomorphic Functions in the Plane and n-dimensional Space年度引用學(xué)科排名




書目名稱Holomorphic Functions in the Plane and n-dimensional Space讀者反饋




書目名稱Holomorphic Functions in the Plane and n-dimensional Space讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:48:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:47:50 | 只看該作者
地板
發(fā)表于 2025-3-22 06:46:34 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:44 | 只看該作者
Klaus Gürlebeck,Klaus Habetha,Wolfgang Spr??igFirst textbook on elementary level introducing to classical complex analysis and its generalizations at the same time.Includes supplementary material:
6#
發(fā)表于 2025-3-22 13:16:04 | 只看該作者
http://image.papertrans.cn/h/image/427953.jpg
7#
發(fā)表于 2025-3-22 17:11:15 | 只看該作者
978-3-7643-8271-1Birkh?user Basel 2008
8#
發(fā)表于 2025-3-22 22:11:08 | 只看該作者
Functions,We know already distances in ?, ? and .. They all have the following properties and define therefore a . in the respective sets: We have for a . .(., .) for all ., ., .:
9#
發(fā)表于 2025-3-23 03:49:34 | 只看該作者
Integration and integral theorems,The Cauchy integral theorem belongs to the central results of complex analysis and tells us in its classical formulation that, for a holomorphic function . in a domain ., the integral along a sufficiently smooth closed curve which is located in . has always the value zero.
10#
發(fā)表于 2025-3-23 07:09:22 | 只看該作者
Series expansions and local behavior,In this section we will use Cauchy’s integral theorem and the integral formula to derive results concerning the convergence behavior of function sequences.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同市| 金川县| 新乡市| 灌云县| 来凤县| 南部县| 道真| 英德市| 龙海市| 大理市| 广饶县| 康乐县| 通榆县| 鲁山县| 竹山县| 扬中市| 遵义县| 宜章县| 钟山县| 石城县| 武安市| 吴桥县| 屯留县| 巴楚县| 西和县| 博罗县| 和龙市| 涞水县| 凯里市| 武宣县| 苍山县| 祁门县| 孙吴县| 广南县| 云安县| 黔南| 敖汉旗| 陆河县| 剑川县| 综艺| 滁州市|