找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Functions and Moduli I; Proceedings of a Wor D. Drasin,I. Kra,F. W. Gehring Conference proceedings 1988 Springer-Verlag New Yor

[復(fù)制鏈接]
樓主: 教條
11#
發(fā)表于 2025-3-23 10:40:09 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:06 | 只看該作者
Conference proceedings 1988articles included here cover a broad spectrum, representative of the activities during the semester. We have made an attempt to group them by subject, for the reader‘s convenience. The Editors take pleasure in thanking all participants, authors and ref- erees for their work in producing these volume
13#
發(fā)表于 2025-3-23 19:05:39 | 只看該作者
14#
發(fā)表于 2025-3-23 23:43:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:38 | 只看該作者
Cone conditions and quasiconformal mappingste that, when . obeys a specific interior cone condition along its boundary, . must satisfy a uniform H?lder condition in ... With regard to .., the dual result one might anticipate — that an exterior cone condition satisfied by . at its boundary would lead to a uniform H?lder estimate for .. in . —
16#
發(fā)表于 2025-3-24 08:23:37 | 只看該作者
Mathematical Sciences Research Institute Publicationshttp://image.papertrans.cn/h/image/427951.jpg
17#
發(fā)表于 2025-3-24 12:20:53 | 只看該作者
18#
發(fā)表于 2025-3-24 15:54:06 | 只看該作者
Dynamics of holomorphic self-maps of ?*In this paper we classify the stable components of holomorphic self-maps of ?* which have finitely many singular values. We use this to study a one and a two parameter family of such functions. We examine the dynamic dependence of these functions on the parameters and study the parameter spaces themselves.
19#
發(fā)表于 2025-3-24 20:31:11 | 只看該作者
Automorphisms of rational mapsLet f(z) be a rational map, Aut(f) the finite group of M?bius transformations commuting with f. We study the question: when can two kinds of more flexible automorphisms of the dynamics of f be realized in Aut(g) for some deformation g of f?
20#
發(fā)表于 2025-3-25 01:33:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
封丘县| 尼勒克县| 开江县| 邵武市| 潜山县| 云林县| 中卫市| 资中县| 巴林右旗| 青岛市| 滦南县| 尼玛县| 饶河县| 黄龙县| 天祝| 铅山县| 武功县| 调兵山市| 无极县| 营山县| 时尚| 兰溪市| 高碑店市| 临湘市| 礼泉县| 天柱县| 泽普县| 松溪县| 商都县| 长沙市| 江永县| 汝城县| 钟山县| 东莞市| 仙游县| 柘荣县| 闽侯县| 隆林| 乳源| 阜康市| 高陵县|