找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holomorphic Curves and Global Questions in Contact Geometry; Casim Abbas,Helmut Hofer Textbook 2019 Springer Nature Switzerland AG 2019 fi

[復(fù)制鏈接]
樓主: bradycardia
11#
發(fā)表于 2025-3-23 13:28:50 | 只看該作者
12#
發(fā)表于 2025-3-23 16:53:04 | 只看該作者
Holomorphic Curves and Global Questions in Contact Geometry978-3-030-11803-7Series ISSN 1019-6242 Series E-ISSN 2296-4894
13#
發(fā)表于 2025-3-23 21:24:09 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:01 | 只看該作者
Basic Results,on are locally diffeomorphic, hence the only local invariant of a contact manifold is its dimension. We will also prove the Legendre neighborhood theorem and its symplectic counterpart, the Lagrange neighborhood theorem. These results provide normal forms for neighborhoods of Legendrian submanifolds
15#
發(fā)表于 2025-3-24 04:27:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:17 | 只看該作者
17#
發(fā)表于 2025-3-24 11:25:55 | 只看該作者
Basic Results,rization of those vector fields whose flow preserves a contact structure (‘contact vector fields’). Reeb vector fields are a special class of contact vector fields. Given a contact structure ., we will find a necessary and sufficient condition for a contact vector field to be the Reeb vector field of some contact form . with ..
18#
發(fā)表于 2025-3-24 17:33:15 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:57 | 只看該作者
Textbook 2019uthors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory..An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic cur
20#
發(fā)表于 2025-3-25 00:36:01 | 只看該作者
Holomorphic Curves and Global Questions in Contact Geometry
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
页游| 容城县| 濉溪县| 洪洞县| 荣成市| 清徐县| 谢通门县| 平度市| 江源县| 特克斯县| 揭西县| 梁平县| 德格县| 得荣县| 台前县| 奇台县| 贵德县| 邻水| 遂宁市| 山东省| 大宁县| 大渡口区| 曲水县| 阳西县| 铁岭县| 丘北县| 邵阳县| 沙田区| 合阳县| 大邑县| 繁峙县| 突泉县| 广德县| 达日县| 金塔县| 繁峙县| 黑龙江省| 麻城市| 万州区| 安仁县| 桃源县|