找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Holographic Entanglement Entropy; Mukund Rangamani,Tadashi Takayanagi Book 2017 Springer International Publishing AG 2017 AdS/CFT Correspo

[復(fù)制鏈接]
樓主: HEM
41#
發(fā)表于 2025-3-28 18:17:04 | 只看該作者
42#
發(fā)表于 2025-3-28 20:07:31 | 只看該作者
Properties of Holographic Entanglement Entropyata. Subleading corrections require ascertaining the bulk entanglement, as discussed in the previous section. All in all, this leads to some unexpected features, which at first sight seem unconventional, but are easily understood once one fully appreciates the implications of the limit ..???1 being effectively a semiclassical regime of the QFT.
43#
發(fā)表于 2025-3-29 01:47:37 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:53 | 只看該作者
Entanglement and Renormalization at the scales of interest. Clearly, this procedure involves some loss of information owing to the coarse-graining—a natural question is how does one capture a useful measure of the number of degrees of freedom at each length scale?
45#
發(fā)表于 2025-3-29 11:16:06 | 只看該作者
Holographic Entanglement Entropyese are rather complex quantities which required us to work with QFTs on singular branched cover manifolds. Apart from the case of CFT. discussed in §3, where the power of conformal invariance can be used to simplify the problem, this is a rather formidable task for interacting QFTs, in general.
46#
發(fā)表于 2025-3-29 13:09:25 | 只看該作者
Entanglement at Large Central Chargeription to compute the physical observables. A general question one might ask is what are the necessary and sufficient conditions for holography to work? Could we recover universal results in a class of field theories that are well approximated by holographic computations?
47#
發(fā)表于 2025-3-29 16:09:26 | 只看該作者
48#
發(fā)表于 2025-3-29 22:15:07 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:07 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/h/image/427930.jpg
50#
發(fā)表于 2025-3-30 05:07:48 | 只看該作者
978-3-319-52571-6Springer International Publishing AG 2017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永修县| 武乡县| 遵义市| 夏津县| 丹凤县| 南乐县| 杨浦区| 成都市| 青川县| 江山市| 抚松县| 芦溪县| 青铜峡市| 嘉义县| 淄博市| 迭部县| 井冈山市| 久治县| 濉溪县| 武定县| 资讯 | 新建县| 大关县| 报价| 聂拉木县| 道真| 咸阳市| 揭阳市| 麻城市| 渭南市| 桐柏县| 广饶县| 新巴尔虎左旗| 齐齐哈尔市| 苏尼特右旗| 尚义县| 白水县| 宁海县| 济南市| 革吉县| 巴彦淖尔市|