找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holographic Entanglement Entropy; Mukund Rangamani,Tadashi Takayanagi Book 2017 Springer International Publishing AG 2017 AdS/CFT Correspo

[復制鏈接]
樓主: HEM
41#
發(fā)表于 2025-3-28 18:17:04 | 只看該作者
42#
發(fā)表于 2025-3-28 20:07:31 | 只看該作者
Properties of Holographic Entanglement Entropyata. Subleading corrections require ascertaining the bulk entanglement, as discussed in the previous section. All in all, this leads to some unexpected features, which at first sight seem unconventional, but are easily understood once one fully appreciates the implications of the limit ..???1 being effectively a semiclassical regime of the QFT.
43#
發(fā)表于 2025-3-29 01:47:37 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:53 | 只看該作者
Entanglement and Renormalization at the scales of interest. Clearly, this procedure involves some loss of information owing to the coarse-graining—a natural question is how does one capture a useful measure of the number of degrees of freedom at each length scale?
45#
發(fā)表于 2025-3-29 11:16:06 | 只看該作者
Holographic Entanglement Entropyese are rather complex quantities which required us to work with QFTs on singular branched cover manifolds. Apart from the case of CFT. discussed in §3, where the power of conformal invariance can be used to simplify the problem, this is a rather formidable task for interacting QFTs, in general.
46#
發(fā)表于 2025-3-29 13:09:25 | 只看該作者
Entanglement at Large Central Chargeription to compute the physical observables. A general question one might ask is what are the necessary and sufficient conditions for holography to work? Could we recover universal results in a class of field theories that are well approximated by holographic computations?
47#
發(fā)表于 2025-3-29 16:09:26 | 只看該作者
48#
發(fā)表于 2025-3-29 22:15:07 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:07 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/h/image/427930.jpg
50#
發(fā)表于 2025-3-30 05:07:48 | 只看該作者
978-3-319-52571-6Springer International Publishing AG 2017
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 23:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴安县| 漳州市| 百色市| 紫阳县| 保靖县| 裕民县| 上虞市| 西充县| 古丈县| 稻城县| 工布江达县| 郯城县| 宜春市| 灵山县| 张家口市| 唐河县| 龙岩市| 育儿| 上高县| 庆城县| 南丰县| 长岛县| 恩施市| 九龙城区| 阳春市| 山东| 肃北| 平湖市| 涪陵区| 日土县| 板桥市| 涞源县| 杭州市| 波密县| 凌云县| 永修县| 忻城县| 施甸县| 简阳市| 连平县| 龙岩市|