找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Holographic Entanglement Entropy; Mukund Rangamani,Tadashi Takayanagi Book 2017 Springer International Publishing AG 2017 AdS/CFT Correspo

[復制鏈接]
樓主: HEM
41#
發(fā)表于 2025-3-28 18:17:04 | 只看該作者
42#
發(fā)表于 2025-3-28 20:07:31 | 只看該作者
Properties of Holographic Entanglement Entropyata. Subleading corrections require ascertaining the bulk entanglement, as discussed in the previous section. All in all, this leads to some unexpected features, which at first sight seem unconventional, but are easily understood once one fully appreciates the implications of the limit ..???1 being effectively a semiclassical regime of the QFT.
43#
發(fā)表于 2025-3-29 01:47:37 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:53 | 只看該作者
Entanglement and Renormalization at the scales of interest. Clearly, this procedure involves some loss of information owing to the coarse-graining—a natural question is how does one capture a useful measure of the number of degrees of freedom at each length scale?
45#
發(fā)表于 2025-3-29 11:16:06 | 只看該作者
Holographic Entanglement Entropyese are rather complex quantities which required us to work with QFTs on singular branched cover manifolds. Apart from the case of CFT. discussed in §3, where the power of conformal invariance can be used to simplify the problem, this is a rather formidable task for interacting QFTs, in general.
46#
發(fā)表于 2025-3-29 13:09:25 | 只看該作者
Entanglement at Large Central Chargeription to compute the physical observables. A general question one might ask is what are the necessary and sufficient conditions for holography to work? Could we recover universal results in a class of field theories that are well approximated by holographic computations?
47#
發(fā)表于 2025-3-29 16:09:26 | 只看該作者
48#
發(fā)表于 2025-3-29 22:15:07 | 只看該作者
49#
發(fā)表于 2025-3-30 01:25:07 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/h/image/427930.jpg
50#
發(fā)表于 2025-3-30 05:07:48 | 只看該作者
978-3-319-52571-6Springer International Publishing AG 2017
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 23:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
聊城市| 洞口县| 禄丰县| 清丰县| 法库县| 肥乡县| 勃利县| 长泰县| 闽侯县| 应城市| 延长县| 丰原市| 长沙市| 阜阳市| 新余市| 呈贡县| 溆浦县| 汶川县| 开江县| 元朗区| 定兴县| 团风县| 康乐县| 台南市| 遂昌县| 佳木斯市| 英吉沙县| 雷州市| 时尚| 阿克苏市| 吴忠市| 哈巴河县| 盐源县| 手游| 甘洛县| 女性| 左云县| 玉环县| 客服| 龙岩市| 甘德县|