找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hodge Cycles, Motives, and Shimura Varieties; Pierre Deligne,James S. Milne,Kuang-yen Shih Book 1982 Springer-Verlag Berlin Heidelberg 198

[復(fù)制鏈接]
查看: 19906|回復(fù): 62
樓主
發(fā)表于 2025-3-21 17:32:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hodge Cycles, Motives, and Shimura Varieties
編輯Pierre Deligne,James S. Milne,Kuang-yen Shih
視頻videohttp://file.papertrans.cn/428/427827/427827.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Hodge Cycles, Motives, and Shimura Varieties;  Pierre Deligne,James S. Milne,Kuang-yen Shih Book 1982 Springer-Verlag Berlin Heidelberg 198
出版日期Book 1982
關(guān)鍵詞Abelian varieties; Abelian variety; Math; Volume; cohomology; construction; group; homology
版次1
doihttps://doi.org/10.1007/978-3-540-38955-2
isbn_softcover978-3-540-11174-0
isbn_ebook978-3-540-38955-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1982
The information of publication is updating

書目名稱Hodge Cycles, Motives, and Shimura Varieties影響因子(影響力)




書目名稱Hodge Cycles, Motives, and Shimura Varieties影響因子(影響力)學科排名




書目名稱Hodge Cycles, Motives, and Shimura Varieties網(wǎng)絡(luò)公開度




書目名稱Hodge Cycles, Motives, and Shimura Varieties網(wǎng)絡(luò)公開度學科排名




書目名稱Hodge Cycles, Motives, and Shimura Varieties被引頻次




書目名稱Hodge Cycles, Motives, and Shimura Varieties被引頻次學科排名




書目名稱Hodge Cycles, Motives, and Shimura Varieties年度引用




書目名稱Hodge Cycles, Motives, and Shimura Varieties年度引用學科排名




書目名稱Hodge Cycles, Motives, and Shimura Varieties讀者反饋




書目名稱Hodge Cycles, Motives, and Shimura Varieties讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:31:57 | 只看該作者
地板
發(fā)表于 2025-3-22 08:00:04 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:00 | 只看該作者
General Introduction,Let X be a smooth projective variety over ?. Hodge conjectured that certain cohomology classes on X are algebraic. The work of Deligne that is described in the first article of this volume shows that, when X is an abelian variety, the classes considered by Hodge have many of the properties of algebraic classes.
6#
發(fā)表于 2025-3-22 14:05:43 | 只看該作者
Notations and Conventions,The ring of finite adèles, .? φ, of φ is denoted by IA., and IA denotes the full ring of adèles IR. × IA.. For E a number field, IA. and IA. denote E ?. IA. and E ? IA. The group of idèles of E is IA., and the idèle class group is C. =IA./E..
7#
發(fā)表于 2025-3-22 18:08:42 | 只看該作者
8#
發(fā)表于 2025-3-22 23:42:57 | 只看該作者
9#
發(fā)表于 2025-3-23 04:17:00 | 只看該作者
Hodge Cycles and Crystalline Cohomology,This paper is a collection of musings about several questions related to crystalline cohomology that have plagued me for the past few years. It contains many more conjectures than proofs, and my justification for publishing is the hope that others will find the problems as intriguing as I did but perhaps have more success in solving them.
10#
發(fā)表于 2025-3-23 09:18:10 | 只看該作者
Tannakian Categories,iliar operations on the category .. of finite-dimensional vector spaces over a field k. What complicates this is the necessity of including enough constraints so that, whenever an obvious isomorphism (e.g., . exists in .., a unique isomorphism is constrained to exist also in the abstract setting.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 贵德县| 新闻| 苍南县| 孟州市| 棋牌| 渭南市| 阳西县| 娄烦县| 龙门县| 吉林市| 枣强县| 来凤县| 黄骅市| 红原县| 山西省| 郑州市| 阿克陶县| 鄢陵县| 华坪县| 肥乡县| 高安市| 泸州市| 新丰县| 西乡县| 宣武区| 嫩江县| 临沂市| 松滋市| 潼南县| 张掖市| 宝鸡市| 拉孜县| 贞丰县| 云南省| 拉萨市| 仁怀市| 桂阳县| 双流县| 武平县| 凭祥市|