找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hip Arthroscopy and Hip Joint Preservation Surgery; Shane J. Nho,Michael Leunig,Bryan T. Kelly Reference work 20151st edition Springer Sci

[復(fù)制鏈接]
樓主: Grant
51#
發(fā)表于 2025-3-30 10:06:22 | 只看該作者
Clinical Biomechanics of the Hip Jointbeen shown to influence the movement and forces at the hip joint. Understanding the normal osteokinematics, arthrokinematics, and muscle actions at the hip joint provides clinicians with the basic biomechanical background to detect impairments that may impact function and contribute to injury. Human
52#
發(fā)表于 2025-3-30 13:58:38 | 只看該作者
53#
發(fā)表于 2025-3-30 18:35:54 | 只看該作者
54#
發(fā)表于 2025-3-30 21:22:16 | 只看該作者
Layered Concept of the Hip and Pelvisbe reviewed with attention paid to structure and function. The most common pathologic conditions affecting the young patient with hip pain will also be reviewed, with an emphasis on the interaction between the layers.
55#
發(fā)表于 2025-3-31 02:21:22 | 只看該作者
56#
發(fā)表于 2025-3-31 08:39:35 | 只看該作者
Operative Indications for Hip Arthroscopy and Open Hip Preservation Surgeryts strengths and limitations are better defined through increased study and use, have also evolved. These include the presence of advance stages of osteoarthritis, inflammatory arthritis, various forms of hip dysplasia, chronic muscle pathology, preexisting neurologic injury, and greater trochanter
57#
發(fā)表于 2025-3-31 11:29:53 | 只看該作者
58#
發(fā)表于 2025-3-31 16:44:04 | 只看該作者
TOM) and finding cancer specific gene clusters using Spectral Clustering (SC). This is followed by a filtering step to extract a much-reduced set of crucial genes using best first search with support vector machine (BFS-SVM). Finally, artificial neural networks, SVM, and K-nearest neighbor classifie
59#
發(fā)表于 2025-3-31 20:46:22 | 只看該作者
Laura E. Thorpdern feature extraction may well assist interpretability and thus imbue AI tools with increased explication, potentially adding insights and advancements in novel chemistry and biology discovery..The capability of learning representations from structures directly without using any predefined structu
60#
發(fā)表于 2025-4-1 00:37:07 | 只看該作者
Philip J. Malloy,Shane J. Nhoombines the low-bias relevance estimator with state-of-the-art relevance estimators in order to enhance their accuracy. The experimental validation on 20 publicly available cancer expression datasets shows the robustness of a selection approach which is not biased by a specific learner.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平南县| 阜南县| 浦城县| 古浪县| 炉霍县| 隆子县| 武山县| 吉水县| 成安县| 青神县| 古浪县| 台东县| 寿宁县| 涞源县| 博罗县| 富蕴县| 鲁山县| 浪卡子县| 当阳市| 绿春县| 左贡县| 岳池县| 屏南县| 会同县| 浦江县| 新营市| 石嘴山市| 邵阳县| 朝阳县| 区。| 邹平县| 江华| 湘乡市| 双江| 恩平市| 宝鸡市| 井陉县| 凉城县| 昂仁县| 富民县| 普定县|