找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics; Willi-Hans Steeb Book 1998 Springer Science+Business Media D

[復(fù)制鏈接]
樓主: estrange
21#
發(fā)表于 2025-3-25 04:52:51 | 只看該作者
22#
發(fā)表于 2025-3-25 08:57:22 | 只看該作者
Classical Mechanics and Hamilton Systems,In classical mechanics (Arnold [2]) we consider the phase space . where .. Here . is the number of particles, . are the momenta and . are the coordinates.
23#
發(fā)表于 2025-3-25 13:11:17 | 只看該作者
Postulates of Quantum Mechanics,Quantum mechanics, as opposed to classical mechanics, gives a probabilistic description of nature. The probabilistic interpretation of measurement is contained in one of the standard postulates of quantum mechanics (Glimm and Jaffe [26], Prugovecki [47], Schommers [52]).
24#
發(fā)表于 2025-3-25 17:26:33 | 只看該作者
25#
發(fā)表于 2025-3-25 21:24:42 | 只看該作者
26#
發(fā)表于 2025-3-26 03:21:23 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:44 | 只看該作者
Harmonic Oscillator,The Hamilton function of the . in one space dimension is given by
28#
發(fā)表于 2025-3-26 08:35:11 | 只看該作者
Coherent and Squeezed States,In chapter 12 we introduced the Bose operators . and .?. In this chapter we study the spectrum of . This leads to the so-called . (Louisell [37]). We adopt the Dirac notation. Coherent states are applied to a wide variety of physical problems (Klauder and Skagerstam [32], Kowalski and Steeb [33]).
29#
發(fā)表于 2025-3-26 14:43:48 | 只看該作者
Angular Momentum and Lie Algebras,In the classical case the . is given by . where x denotes the cross product. The components of L are given by . Introducing the quantization . yields . Furthermore we define
30#
發(fā)表于 2025-3-26 19:48:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定陶县| 秦皇岛市| 石林| 杭锦旗| 黔南| 琼结县| 盐源县| 泗阳县| 凉城县| 玉溪市| 保康县| 门源| 全南县| 南宁市| 南澳县| 新乡市| 易门县| 贞丰县| 崇左市| 天津市| 通辽市| 东宁县| 南平市| 长葛市| 同德县| 太仓市| 呼玛县| 南江县| 三亚市| 平塘县| 湘阴县| 东乌珠穆沁旗| 阿鲁科尔沁旗| 道孚县| 溧阳市| 宜良县| 信阳市| 新建县| 阆中市| 新竹县| 浦城县|