找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials; Allan M. Krall Book 2002 Springer Basel AG 2002 Boundary value problem.

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:54:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:56:49 | 只看該作者
Examples of Sobolev Differential OperatorsFrom each section of the previous chapter we list at least one example. For the singular problems there are several.
43#
發(fā)表于 2025-3-29 01:05:24 | 只看該作者
Regular Linear Hamiltonian Systems L. Wilder and L. Schlesinger. G. A. Bliss [3] in 1926 seems to have been the first to discuss regular, self-adjoint differential systems. Additional references to their works may be found in the papers of Birkhoff and Langer [2], and in the book [4] by Coddington and Levinson.
44#
發(fā)表于 2025-3-29 04:59:19 | 只看該作者
45#
發(fā)表于 2025-3-29 08:49:58 | 只看該作者
The Spectral Resolution for Linear Hamiltonian Systems with One Singular Pointperators in a Hilbert space, looks like when applied to the self-adjoint linear Hamiltonian systems of Hinton and Shaw. Remarkably we can find detailed formulas for the spectral measure and the Hilbert space it generates, far more than is possible for the setting employed by Niessen.
46#
發(fā)表于 2025-3-29 14:27:22 | 只看該作者
47#
發(fā)表于 2025-3-29 15:40:32 | 只看該作者
48#
發(fā)表于 2025-3-29 21:35:24 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/h/image/427075.jpg
49#
發(fā)表于 2025-3-30 00:42:27 | 只看該作者
0255-0156 systemsand their scalar counterparts and their application to orthogonal polynomials. In a sense, this is an updating of E. C. Titchmarsh‘s classic Eigenfunction Expansions. My interest in these areas began in 1960-61, when, as a graduate student, I was introduced by my advisors E. J. McShane and M
50#
發(fā)表于 2025-3-30 06:05:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹寨县| 龙海市| 宁河县| 烟台市| 江川县| 天长市| 南岸区| 板桥市| 峨眉山市| 邢台市| 呼玛县| 涞源县| 治县。| 来凤县| 临邑县| 应城市| 五华县| 濮阳县| 海盐县| 金秀| 靖边县| 南充市| 上虞市| 洛南县| 枣庄市| 湟源县| 建阳市| 库尔勒市| 成都市| 开鲁县| 紫金县| 天津市| 理塘县| 台中县| 克什克腾旗| 贵州省| 峨山| 临沭县| 谢通门县| 繁峙县| 泰顺县|