找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change; Jayce Getz,Mark Goresky Book 2012 Springer Bas

[復(fù)制鏈接]
樓主: CYNIC
31#
發(fā)表于 2025-3-26 23:40:13 | 只看該作者
32#
發(fā)表于 2025-3-27 04:11:24 | 只看該作者
The Automorphic Description of Intersection Cohomology,
33#
發(fā)表于 2025-3-27 07:58:16 | 只看該作者
Hilbert Modular Forms with Coefficients in a Hecke Module,
34#
發(fā)表于 2025-3-27 10:24:16 | 只看該作者
35#
發(fā)表于 2025-3-27 16:50:54 | 只看該作者
Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change
36#
發(fā)表于 2025-3-27 18:24:49 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:55 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:21 | 只看該作者
Book 2012the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not
39#
發(fā)表于 2025-3-28 07:56:48 | 只看該作者
Book 2012 Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.
40#
發(fā)表于 2025-3-28 11:45:18 | 只看該作者
H. B?smüllernd used frequently throughout the book. Another major goal of the book is to provide students with enough practical understanding of the methods so they are able to write simple programs on their own. To achieve this, the book contains several MATLAB programs and detailed description of practical is
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临澧县| 金塔县| 渑池县| 贞丰县| 乐安县| 铜鼓县| 建德市| 军事| 铁力市| 桂林市| 仙居县| 广平县| 秀山| 舞阳县| 南投市| 松滋市| 葫芦岛市| 石林| 临安市| 疏附县| 共和县| 新沂市| 禹州市| 咸宁市| 象山县| 天祝| 扎囊县| 赤峰市| 元朗区| 章丘市| 成安县| 乡城县| 深水埗区| 丰县| 巫溪县| 桂阳县| 南丰县| 吉林市| 定远县| 武冈市| 昌邑市|