找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Coll; International Worksh Fernando De La P

[復(fù)制鏈接]
樓主: 無力向前
41#
發(fā)表于 2025-3-28 17:33:08 | 只看該作者
42#
發(fā)表于 2025-3-28 20:08:16 | 只看該作者
43#
發(fā)表于 2025-3-29 02:50:13 | 只看該作者
Conference proceedings 2021-Agent Systems, PAAMS 2021, held in Salamanca, Spain, in October 2021..The total of 17 full and 9 short papers presented in this volume were carefully selected from 42 submissions..The papers in this volume stem from the following meetings:Workshop on Character Computing (C2); Workshop on Deep Learn
44#
發(fā)表于 2025-3-29 06:40:26 | 只看該作者
45#
發(fā)表于 2025-3-29 10:41:13 | 只看該作者
A Hybrid Supervised/Unsupervised Machine Learning Approach to Classify Web Servicesmerative hierarchical clustering algorithm. Second, several supervised learning algorithms have been applied to determine service categories. The findings show that the hybrid approach using the combination of hierarchical clustering and SVM provides acceptable results in comparison with other unsupervised/supervised combinations.
46#
發(fā)表于 2025-3-29 13:01:12 | 只看該作者
47#
發(fā)表于 2025-3-29 17:07:38 | 只看該作者
XReC: Towards a Generic Module-Based Framework for Explainable Recommendation Based on Charactery after the outbreak of the COVID-19, people head to the virtual world by shopping online instead of going to the actual store, watching movies on platforms like “Netflix” instead of going to cinemas, or companies are applying different methods to continue their internal operations online. So most c
48#
發(fā)表于 2025-3-29 20:10:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:51:29 | 只看該作者
Contributions of Character Computing to AI Based Adaptive Learning Environments – A Discussion which can be exploited for personalized learning using AI based approaches of XAI and active learning. Integrating concepts of character computing enables a more robust adaptation to the learner’s needs. The paper discusses future application scenarios of XAI, virtual learning companions and social
50#
發(fā)表于 2025-3-30 07:18:18 | 只看該作者
An Attentional Model for Earthquake Prediction Using Seismic Datae; therefore, techniques to predict such events are essential to minimize their impacts. However, despite all efforts to estimate the occurrence of a disaster, making an accurate and robust forecast is a challenging task. In recent years, Deep Learning techniques have innovated several fields by lea
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳信县| 玉龙| 乐平市| 桑植县| 江永县| 瑞丽市| 沙河市| 枣庄市| 四子王旗| 武隆县| 邯郸市| 玛沁县| 恩平市| 永福县| 肇东市| 澄城县| 平果县| 盐津县| 寿阳县| 临桂县| 蚌埠市| 上虞市| 朝阳区| 玉屏| 胶州市| 怀安县| 哈尔滨市| 文安县| 旬邑县| 萝北县| 宁陕县| 西和县| 宁河县| 望江县| 天柱县| 临清市| 井研县| 华宁县| 萍乡市| 揭东县| 登封市|