找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Coll; International Worksh Fernando De La P

[復(fù)制鏈接]
樓主: 無力向前
41#
發(fā)表于 2025-3-28 17:33:08 | 只看該作者
42#
發(fā)表于 2025-3-28 20:08:16 | 只看該作者
43#
發(fā)表于 2025-3-29 02:50:13 | 只看該作者
Conference proceedings 2021-Agent Systems, PAAMS 2021, held in Salamanca, Spain, in October 2021..The total of 17 full and 9 short papers presented in this volume were carefully selected from 42 submissions..The papers in this volume stem from the following meetings:Workshop on Character Computing (C2); Workshop on Deep Learn
44#
發(fā)表于 2025-3-29 06:40:26 | 只看該作者
45#
發(fā)表于 2025-3-29 10:41:13 | 只看該作者
A Hybrid Supervised/Unsupervised Machine Learning Approach to Classify Web Servicesmerative hierarchical clustering algorithm. Second, several supervised learning algorithms have been applied to determine service categories. The findings show that the hybrid approach using the combination of hierarchical clustering and SVM provides acceptable results in comparison with other unsupervised/supervised combinations.
46#
發(fā)表于 2025-3-29 13:01:12 | 只看該作者
47#
發(fā)表于 2025-3-29 17:07:38 | 只看該作者
XReC: Towards a Generic Module-Based Framework for Explainable Recommendation Based on Charactery after the outbreak of the COVID-19, people head to the virtual world by shopping online instead of going to the actual store, watching movies on platforms like “Netflix” instead of going to cinemas, or companies are applying different methods to continue their internal operations online. So most c
48#
發(fā)表于 2025-3-29 20:10:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:51:29 | 只看該作者
Contributions of Character Computing to AI Based Adaptive Learning Environments – A Discussion which can be exploited for personalized learning using AI based approaches of XAI and active learning. Integrating concepts of character computing enables a more robust adaptation to the learner’s needs. The paper discusses future application scenarios of XAI, virtual learning companions and social
50#
發(fā)表于 2025-3-30 07:18:18 | 只看該作者
An Attentional Model for Earthquake Prediction Using Seismic Datae; therefore, techniques to predict such events are essential to minimize their impacts. However, despite all efforts to estimate the occurrence of a disaster, making an accurate and robust forecast is a challenging task. In recent years, Deep Learning techniques have innovated several fields by lea
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万山特区| 福鼎市| 吴江市| 伽师县| 横山县| 澄迈县| 如东县| 房山区| 包头市| 新疆| 云安县| 喀喇| 麻城市| 睢宁县| 沐川县| 襄汾县| 北碚区| 沁源县| 澎湖县| 长沙县| 金昌市| 大名县| 宁远县| 五家渠市| 曲阜市| 科技| 武安市| 石泉县| 开阳县| 定西市| 凯里市| 克拉玛依市| 来凤县| 高州市| 宜丰县| 固安县| 天全县| 马山县| 大丰市| 礼泉县| 富顺县|