找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Higher Structures in Geometry and Physics; In Honor of Murray G Alberto S. Cattaneo,Anthony Giaquinto,Ping Xu Book 2011 Springer Science+Bu

[復(fù)制鏈接]
樓主: 悲傷我
31#
發(fā)表于 2025-3-26 23:28:09 | 只看該作者
Topics in Algebraic Deformation Theory,We give a selective survey of topics in algebraic deformation theory ranging from its inception to current times. Throughout, the numerous contributions of Murray Gerstenhaber are emphasized, especially the common themes of cohomology, infinitesimal methods, and explicit global deformation formulas.
32#
發(fā)表于 2025-3-27 01:37:42 | 只看該作者
Symplectic Connections of Ricci Type and Star Products,In this article we relate the construction of Ricci-type symplectic connections by reduction to the construction of star products by reduction yielding rather explicit descriptions for the star product on the reduced space..AMS Classification (2010): 53D55, 53C07, 53D20
33#
發(fā)表于 2025-3-27 06:41:25 | 只看該作者
,Noncommutative Calculus and the Gauss–Manin Connection,..After an overview of noncommutative differential calculus, we construct parts of it explicitly and explain why this construction agrees with a fuller version obtained from the theory of operads...: 19D55, 18G55
34#
發(fā)表于 2025-3-27 10:04:00 | 只看該作者
The Lie Algebra Perturbation Lemma,Let . be a commutative ring which contains the rational numbers as a subring. We shall establish the following.
35#
發(fā)表于 2025-3-27 16:19:48 | 只看該作者
36#
發(fā)表于 2025-3-27 19:36:26 | 只看該作者
,Permutahedra, HKR Isomorphism and Polydifferential Gerstenhaber–Schack Complex,This paper aims to give a short but self-contained introduction into the theory of (wheeled) props, properads, dioperads and operads, and illustrate some of its key ideas in terms of a prop(erad)ic interpretation of simplicial and permutahedra cell complexes with subsequent applications to the Hochschild–Kostant–Rosenberg type isomorphisms.
37#
發(fā)表于 2025-3-28 00:40:35 | 只看該作者
38#
發(fā)表于 2025-3-28 05:08:50 | 只看該作者
39#
發(fā)表于 2025-3-28 09:27:18 | 只看該作者
Differential Geometry of Gerbes and Differential Forms,give a more direct derivation of the associated cocycle equations. This leads us to a more restrictive definition than in [.] of the corresponding coboundary relations. We also show that the diagrammatic proofs of certain local curving and curvature equations may be replaced by computations with differential forms.
40#
發(fā)表于 2025-3-28 14:29:35 | 只看該作者
Categorification of Acyclic Cluster Algebras: An Introduction,e review the definition cluster algebras (geometric, without coefficients), construct the cluster category and present the bijection between cluster variables and rigid indecomposable objects of the cluster category.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开化县| 醴陵市| 名山县| 阿巴嘎旗| 霍州市| 邹城市| 沿河| 武平县| 十堰市| 洞口县| 泉州市| 光泽县| 宝坻区| 青铜峡市| 山丹县| 儋州市| 五家渠市| 泸定县| 舞钢市| 凌海市| 普格县| 土默特左旗| 察雅县| 邵东县| 和平区| 龙门县| 朝阳区| 星子县| 三江| 慈利县| 新晃| 句容市| 沅江市| 志丹县| 宁安市| 永修县| 抚远县| 壶关县| 兰西县| 常宁市| 肇源县|