找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Higher Gradient Materials and Related Generalized Continua; Holm Altenbach,Wolfgang H. Müller,Bilen Emek Abali Book 2019 Springer Nature S

[復制鏈接]
樓主: 矜持
21#
發(fā)表于 2025-3-25 04:00:52 | 只看該作者
22#
發(fā)表于 2025-3-25 07:31:57 | 只看該作者
Advanced Structured Materialshttp://image.papertrans.cn/h/image/426967.jpg
23#
發(fā)表于 2025-3-25 12:35:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:13 | 只看該作者
25#
發(fā)表于 2025-3-25 22:35:21 | 只看該作者
26#
發(fā)表于 2025-3-26 04:08:16 | 只看該作者
27#
發(fā)表于 2025-3-26 04:28:46 | 只看該作者
A Computational Approach for Determination of Parameters in Generalized Mechanics,acroscopic length scale. Their modeling at the macroscale is attained by using the generalized mechanics that incorporates higher gradients of the displacement leading to additional parameters effected by the “inner” structure at the microscale. As these additional parameters are a consequence of th
28#
發(fā)表于 2025-3-26 10:05:24 | 只看該作者
Extensible Beam Models in Large Deformation Under Distributed Loading: A Numerical Study on Multiplparticular cases in which: i) extensional stiffness is infinite (inextensible Timoshenko model), ii) shear stiffness is infinite (extensible Euler model) and iii) extensional and shear stiffnesses are infinite (inextensible Euler model) will be numerically explored. Parametric studies on the axial s
29#
發(fā)表于 2025-3-26 15:22:33 | 只看該作者
On the Characterization of the Nonlinear Reduced Micromorphic Continuum with the Local Material Symons of the reduced micromorphic continuum introduced in Neff et al (2014). With this definition we demonstrate that the reduced micromorphic model can be characterized as a micromorphic subfluid that is an intermediate class between micromorphic solids and fluids.
30#
發(fā)表于 2025-3-26 20:30:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
琼结县| 闸北区| 塔河县| 靖州| 屏山县| 左权县| 太和县| 墨竹工卡县| 龙山县| 石楼县| 大悟县| 台中县| 华亭县| 通城县| 美姑县| 宜川县| 交口县| 东平县| 南昌县| 泰安市| 浠水县| 将乐县| 靖西县| 邓州市| 平阳县| 特克斯县| 交城县| 纳雍县| 宁津县| 迁安市| 武隆县| 南昌市| 彝良县| 蕲春县| 鄂伦春自治旗| 曲阜市| 南安市| 湖南省| 麻阳| 兰西县| 石屏县|