找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Higher Education, Globalization and Eduscapes; Towards a Critical A Per-Anders Forstorp,Ulf Mellstr?m Book 2018 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 11:16:17 | 只看該作者
ated L-functions. A very precise conjecture has been formulated for elliptic curves by Birc~ and Swinnerton-Dyer and generalized to abelian varieties by Tate. The numerical evidence is quite encouraging. A weakened form of the conjectures has been verified for CM elliptic curves by Coates and Wiles,
12#
發(fā)表于 2025-3-23 15:23:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:24 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?m (.(.)). together with an additional function .∞ (which will take care of the size constraints), for which we assume the following bound:. for some parameters ., ., . and (.).. The Bombieri-Vinogradov Theorem falls within this framework with .∞ being the characteristic function of real numbers ≤ . a
14#
發(fā)表于 2025-3-24 02:03:55 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?msinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analys
15#
發(fā)表于 2025-3-24 03:08:23 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?msinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analys
16#
發(fā)表于 2025-3-24 08:40:48 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?msinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analys
17#
發(fā)表于 2025-3-24 14:16:50 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms and the p-adic numbers. The p-adic numbers contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilb
18#
發(fā)表于 2025-3-24 15:54:06 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms and the p-adic numbers. The p-adic numbers contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilb
19#
發(fā)表于 2025-3-24 21:23:52 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms and the p-adic numbers. The p-adic numbers contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilb
20#
發(fā)表于 2025-3-25 02:32:55 | 只看該作者
Per-Anders Forstorp,Ulf Mellstr?ms contain the p-adic integers Z.p. which are the inverse limit of the finite rings Z/p.n.. This gives rise to a tree, and probability measures w on Z.p. correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L.2.(Z.p.,w). The real analogue o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大埔区| 黄骅市| 镇沅| 东城区| 厦门市| 泰顺县| 雷波县| 华蓥市| 罗源县| 临汾市| 鱼台县| 潼关县| 中江县| 自治县| 武隆县| 鹤山市| 沾化县| 宁阳县| 平泉县| 潜江市| 金乡县| 乌鲁木齐县| 民丰县| 大同县| 龙州县| 南陵县| 仙桃市| 黎平县| 凉城县| 阳西县| 潞城市| 襄垣县| 苏州市| 红河县| 新和县| 安塞县| 元谋县| 湄潭县| 和田市| 岑溪市| 汉阴县|