找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-dimensional Knot Theory; Algebraic Surgery in Andrew Ranicki Book 1998 Springer-Verlag Berlin Heidelberg 1998 K-theory.homology.knots.

[復(fù)制鏈接]
查看: 49344|回復(fù): 65
樓主
發(fā)表于 2025-3-21 16:16:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱High-dimensional Knot Theory
副標題Algebraic Surgery in
編輯Andrew Ranicki
視頻videohttp://file.papertrans.cn/427/426816/426816.mp4
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: High-dimensional Knot Theory; Algebraic Surgery in Andrew Ranicki Book 1998 Springer-Verlag Berlin Heidelberg 1998 K-theory.homology.knots.
描述High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. The main theme is the application of the author‘s algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books, which are manifolds with codimension 2 submanifolds such that the complement fibres over a circle. The book concludes with an appendix by E. Winkelnkemper on the history of open books.
出版日期Book 1998
關(guān)鍵詞K-theory; homology; knots; manifolds; open books; surgery
版次1
doihttps://doi.org/10.1007/978-3-662-12011-8
isbn_softcover978-3-642-08329-7
isbn_ebook978-3-662-12011-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 1998
The information of publication is updating

書目名稱High-dimensional Knot Theory影響因子(影響力)




書目名稱High-dimensional Knot Theory影響因子(影響力)學科排名




書目名稱High-dimensional Knot Theory網(wǎng)絡(luò)公開度




書目名稱High-dimensional Knot Theory網(wǎng)絡(luò)公開度學科排名




書目名稱High-dimensional Knot Theory被引頻次




書目名稱High-dimensional Knot Theory被引頻次學科排名




書目名稱High-dimensional Knot Theory年度引用




書目名稱High-dimensional Knot Theory年度引用學科排名




書目名稱High-dimensional Knot Theory讀者反饋




書目名稱High-dimensional Knot Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:00 | 只看該作者
地板
發(fā)表于 2025-3-22 06:53:06 | 只看該作者
Localization and completion in ,-theoryy reducing the computation for a complicated ring to simpler rings (e.g. fields). The classic example of localization and completion is the Hasse-Minkowski principle by which quadratic forms over ? are related to quadratic forms over ? and the finite fields F. and the .-adic completions ., . of ?, ?
5#
發(fā)表于 2025-3-22 11:57:35 | 只看該作者
Algebraic transversalityclic covers of compact manifolds and finite . complexes. Refer to Ranicki [244, Chap. 4] for a previous account of algebraic transversality: here, only the additional results required for the new applications are proved. The construction in Part Two of the algebraic invariants of knots will make use
6#
發(fā)表于 2025-3-22 14:34:38 | 只看該作者
Noncommutative localizatione noncommutative rings. High-dimensional knot theory requires the noncommutative localization matrix inversion method of Cohn [53], [54]. The algebraic .- and .-theory invariants of codimension 2 embeddings frequently involve this type of localization of a polynomial ring, as will become apparent in
7#
發(fā)表于 2025-3-22 18:29:13 | 只看該作者
Endomorphism ,-theoryith an endomorphism . : . → . is essentially the same as a module (., .) over the polynomial ring .[.], with the indeterminate . acting on . by . This correspondence will be used to relate the algebraic .-groups .. (...[.]) of the localizations ...[.] of .[.] to the .-groups of pairs (., .) with . a
8#
發(fā)表于 2025-3-22 23:57:06 | 只看該作者
9#
發(fā)表于 2025-3-23 01:51:30 | 只看該作者
Witt vectorstermines the endomorphism .-theory class. In Chap. 17 the Reidemeister torsion of an .-contractible finite f.g. .[., ..]-module chain complex . will be identified with the Witt vector determined by the Alexander polynomials. In the applications to knot theory in Chap. 33 . will be the cellular chain
10#
發(fā)表于 2025-3-23 07:50:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中西区| 大渡口区| 龙南县| 潜山县| 高邮市| 祁东县| 英超| 简阳市| 宣武区| 合肥市| 大田县| 广饶县| 河南省| 长乐市| 赞皇县| 玛沁县| 八宿县| 武陟县| 吉安县| 格尔木市| 连平县| 扶沟县| 裕民县| 仪征市| 华容县| 辽宁省| 天全县| 新巴尔虎右旗| 台东市| 新郑市| 沙洋县| 乌什县| 宁武县| 福州市| 寻乌县| 门源| 栾城县| 新疆| 桃源县| 资兴市| 仙游县|