找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-Performance Simulation-Based Optimization; Thomas Bartz-Beielstein,Bogdan Filipi?,El-Ghazali Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
查看: 8835|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:28:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱High-Performance Simulation-Based Optimization
編輯Thomas Bartz-Beielstein,Bogdan Filipi?,El-Ghazali
視頻videohttp://file.papertrans.cn/427/426681/426681.mp4
概述Presents the state of the art in designing high-performance algorithms that combine machine learning and optimization in order to solve complex problems.Provides theoretical treatments and real-world
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: High-Performance Simulation-Based Optimization;  Thomas Bartz-Beielstein,Bogdan Filipi?,El-Ghazali  Book 2020 Springer Nature Switzerland A
描述This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research..?.That’s where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.? ?.
出版日期Book 2020
關(guān)鍵詞Computational Intelligence; Many-Objective Optimization; Surrogate-Based Optimization; Parallel Optimiz
版次1
doihttps://doi.org/10.1007/978-3-030-18764-4
isbn_softcover978-3-030-18766-8
isbn_ebook978-3-030-18764-4Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱High-Performance Simulation-Based Optimization影響因子(影響力)




書目名稱High-Performance Simulation-Based Optimization影響因子(影響力)學(xué)科排名




書目名稱High-Performance Simulation-Based Optimization網(wǎng)絡(luò)公開度




書目名稱High-Performance Simulation-Based Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱High-Performance Simulation-Based Optimization被引頻次




書目名稱High-Performance Simulation-Based Optimization被引頻次學(xué)科排名




書目名稱High-Performance Simulation-Based Optimization年度引用




書目名稱High-Performance Simulation-Based Optimization年度引用學(xué)科排名




書目名稱High-Performance Simulation-Based Optimization讀者反饋




書目名稱High-Performance Simulation-Based Optimization讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:45:28 | 只看該作者
Many-Objective Optimization with Limited Computing Budgetg objectives. In recent years, a number of efficient algorithms have been proposed to deal with such problems, commonly referred to as many-objective optimization problems?(MaOP). However, most such algorithms require evaluation of numerous solutions prior to convergence which may not be affordable
板凳
發(fā)表于 2025-3-22 01:54:46 | 只看該作者
Multi-objective Bayesian Optimization for Engineering Simulationgate model (typically Kriging or a Gaussian Process) on evaluations of the objective function(s). To determine the next evaluation, an acquisition function is optimized (also referred to as infill criterion or sampling policy) which incorporates the model prediction and uncertainty and balances expl
地板
發(fā)表于 2025-3-22 05:40:24 | 只看該作者
Automatic Configuration of Multi-objective Optimizers and Multi-objective Configurationxpertise. As the proper configuration of algorithms is a crucial aspect in the engineering of heuristic algorithms, a significant research effort has been dedicated over the last years towards moving this step to the computer and, thus, make it automatic. These research efforts go way beyond . only
5#
發(fā)表于 2025-3-22 08:46:52 | 只看該作者
Optimization and Visualization in Many-Objective Space Trajectory Design Moon. The orbital raising phase is divided uniformly into sixteen sections, of which the first six are set to full propagation to escape early from the radiation belts, and the profiles of the other ten sections are subject to optimization together with the propagation start date and the spacecraft
6#
發(fā)表于 2025-3-22 16:29:17 | 只看該作者
7#
發(fā)表于 2025-3-22 17:42:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:18 | 只看該作者
Surrogate-Assisted Evolutionary Optimization of Large Problemsmber of decision variables is large, or the number of objectives is large, or both. These problems pose challenges to evolutionary algorithms themselves, constructing surrogates and surrogate management. To address these challenges, we proposed two algorithms, one called kriging-assisted reference v
9#
發(fā)表于 2025-3-23 04:47:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长武县| 清河县| 保山市| 集贤县| 绥德县| 荔波县| 屯门区| 奈曼旗| 沐川县| 孟津县| 阿尔山市| 湘潭县| 米脂县| 寻甸| 沂源县| 龙胜| 昌平区| 西峡县| 陇南市| 苏尼特左旗| 康保县| 古丈县| 汶川县| 通道| 临夏县| 松阳县| 平安县| 班戈县| 家居| 遵化市| 斗六市| 金阳县| 玛多县| 花莲县| 旺苍县| 莱阳市| 西丰县| 昌黎县| 开平市| 永康市| 商都县|