找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-Performance Big-Data Analytics; Computing Systems an Pethuru Raj,Anupama Raman,Siddhartha Duggirala Book 2015 Springer International P

[復(fù)制鏈接]
查看: 19188|回復(fù): 52
樓主
發(fā)表于 2025-3-21 18:18:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱High-Performance Big-Data Analytics
副標(biāo)題Computing Systems an
編輯Pethuru Raj,Anupama Raman,Siddhartha Duggirala
視頻videohttp://file.papertrans.cn/427/426641/426641.mp4
概述Vividly illustrates the benefits of using high-performance infrastructures for next-generation data analytics.Provides numerous and varied case studies and examples of best practice.Includes learning
叢書名稱Computer Communications and Networks
圖書封面Titlebook: High-Performance Big-Data Analytics; Computing Systems an Pethuru Raj,Anupama Raman,Siddhartha Duggirala Book 2015 Springer International P
描述This book presents a detailed review of high-performance computing infrastructures for next-generation big data and fast data analytics. Features: includes case studies and learning activities throughout the book and self-study exercises in every chapter; presents detailed case studies on social media analytics for intelligent businesses and on big data analytics (BDA) in the healthcare sector; describes the network infrastructure requirements for effective transfer of big data, and the storage infrastructure. .requirements of applications which generate big data; examines real-time analytics solutions; introduces in-database processing and in-memory analytics techniques for data mining; discusses the use of mainframes for handling real-time big data and the latest types of data management systems for BDA; provides information on the use of cluster, grid and cloud computing systems for BDA; reviews the peer-to-peer techniques and tools and the common information visualization techniques, used in BDA.
出版日期Book 2015
關(guān)鍵詞Big Data Analytics; Hadoop Distributed File System (HDFS); Hadoop Software Framework; Internet of Thing
版次1
doihttps://doi.org/10.1007/978-3-319-20744-5
isbn_softcover978-3-319-36324-0
isbn_ebook978-3-319-20744-5Series ISSN 1617-7975 Series E-ISSN 2197-8433
issn_series 1617-7975
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱High-Performance Big-Data Analytics影響因子(影響力)




書目名稱High-Performance Big-Data Analytics影響因子(影響力)學(xué)科排名




書目名稱High-Performance Big-Data Analytics網(wǎng)絡(luò)公開度




書目名稱High-Performance Big-Data Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱High-Performance Big-Data Analytics被引頻次




書目名稱High-Performance Big-Data Analytics被引頻次學(xué)科排名




書目名稱High-Performance Big-Data Analytics年度引用




書目名稱High-Performance Big-Data Analytics年度引用學(xué)科排名




書目名稱High-Performance Big-Data Analytics讀者反饋




書目名稱High-Performance Big-Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:08:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:13:10 | 只看該作者
1617-7975 ase studies and examples of best practice.Includes learning This book presents a detailed review of high-performance computing infrastructures for next-generation big data and fast data analytics. Features: includes case studies and learning activities throughout the book and self-study exercises in
地板
發(fā)表于 2025-3-22 05:48:52 | 只看該作者
In-Database Processing and In-Memory Analytics,rocessing to the data is the principle advocated by in-database processing, while the in memory focuses on keeping the data completely in memory to increase the processing speed. In this chapter, we will learn and analyze these two and study some use case to improve our understanding.
5#
發(fā)表于 2025-3-22 11:53:56 | 只看該作者
High-Performance Grids and Clusters,rids is vastly different. The clusters are generally employed with the locally interconnected systems, whereas grids are employed at a much wider and distributed scale. In this chapter we will learn more about these two interconnected paradigms and study some use cases.
6#
發(fā)表于 2025-3-22 13:34:40 | 只看該作者
7#
發(fā)表于 2025-3-22 18:30:49 | 只看該作者
8#
發(fā)表于 2025-3-22 22:56:02 | 只看該作者
High-Performance Computing (HPC) Paradigms, extinct but have surprised the business on how it has evolved with better capabilities to handle real-time data and the so-called big data. This chapter covers all interesting solutions on how mainframe can still be used to provide better client solutions.
9#
發(fā)表于 2025-3-23 03:51:01 | 只看該作者
High-Performance Peer-to-Peer Systems,jor theme for high-performance computing. With goals of dynamism, ad hoc collaboration, and cost sharing, these platforms show the following distinguishing traits: decentralization, highly scalability, and low cost of ownership. In this chapter, we learn about the design goals and principles and various commercial and scientific systems available.
10#
發(fā)表于 2025-3-23 08:38:05 | 只看該作者
Big Data Analytics for Healthcare,nts. In this chapter, we will talk about various market factors affecting healthcare and how big data and analytics can help bring out value from data. We will look into interesting facts about various technology adoptions like IBM Watson and how these new technology adoptions play a vital role in improving the quality of care.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德州市| 定南县| 祁东县| 桦南县| 石家庄市| 稷山县| 封开县| 襄垣县| 静宁县| 诏安县| 佛教| 大厂| 邯郸市| 新晃| 孟连| 贵港市| 江山市| 嘉兴市| 建宁县| 宁城县| 班戈县| 西乡县| 兴文县| 嘉兴市| 九龙县| 兴化市| 玉溪市| 东辽县| 阳东县| 太保市| 江山市| 汉川市| 天全县| 阿城市| 武夷山市| 象州县| 海阳市| 阜康市| 维西| 大英县| 永登县|