找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High-Impact Weather Events over the SAARC Region; Kamaljit Ray,M. Mohapatra,L.S. Rathore Book 2015 Capital Publishing Company 2015 Extreme

[復(fù)制鏈接]
樓主: CHARY
31#
發(fā)表于 2025-3-27 00:50:00 | 只看該作者
d edited contributions from international experts in approxi.These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Th
32#
發(fā)表于 2025-3-27 02:40:51 | 只看該作者
Pulak Guhathakurtad edited contributions from international experts in approxi.These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Th
33#
發(fā)表于 2025-3-27 07:35:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:43:49 | 只看該作者
Abdul Mannan,Mahbub Alamd edited contributions from international experts in approxi.These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Th
35#
發(fā)表于 2025-3-27 15:45:10 | 只看該作者
36#
發(fā)表于 2025-3-27 21:17:11 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:07 | 只看該作者
38#
發(fā)表于 2025-3-28 05:23:09 | 只看該作者
Nazlee Ferdousi,Sujit K. Debsarma,Abdul Mannan,Majajul Alam Sarkerrs of stochastic type, convolution type, wavelet type integral opera- tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat- ics such a
39#
發(fā)表于 2025-3-28 09:33:05 | 只看該作者
A. Chevuturi,A. P. Dimriso operators of stochastic type, convolution type, wavelet type integral opera- tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat- ics such a978-1-4612-7112-3978-1-4612-1360-4
40#
發(fā)表于 2025-3-28 13:11:43 | 只看該作者
Mohan K. Das,Someshwar Das,Mizanur Rahmanrs of stochastic type, convolution type, wavelet type integral opera- tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat- ics such a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东平县| 环江| 高尔夫| 安国市| 新建县| 车致| 紫金县| 明水县| 平泉县| 襄城县| 南郑县| 遂昌县| 崇信县| 乐平市| 罗田县| 兰考县| 广宗县| 新民市| 巫山县| 昭通市| 和田市| 罗甸县| 叶城县| 时尚| 晋城| 吉林市| 德令哈市| 香格里拉县| 广昌县| 安溪县| 苍南县| 佳木斯市| 恭城| 仁布县| 莱芜市| 天镇县| 横山县| 上栗县| 晋宁县| 肇源县| 双柏县|